Listing 1 - 10 of 152 | << page >> |
Sort by
|
Choose an application
"Spacetime and Geometry is an introductory textbook on general relativity, specifically aimed at students. Using a lucid style, Carroll first covers the foundations of the theory and mathematical formalism, providing an approachable introduction to what can often be an intimidating subject. Three major applications of general relativity are then discussed: black holes, perturbation theory and gravitational waves, and cosmology. Students will learn the origin of how spacetime curves (the Einstein equation) and how matter moves through it (the geodesic equation). They will learn what black holes really are, how gravitational waves are generated and detected, and the modern view of the expansion of the universe. A brief introduction to quantum field theory in curved spacetime is also included. A student familiar with this book will be ready to tackle research-level problems in gravitational physics"--
Choose an application
"This textbook explores approximate solutions to general relativity and their consequences. It offers a unique presentation of Einstein's theory by developing powerful methods that can be applied to astrophysical systems. Beginning with a uniquely thorough treatment of Newtonian gravity, the book develops post-Newtonian and post-Minkowskian approximation methods to obtain weak-field solutions to the Einstein field equations. The book explores the motion of self-gravitating bodies, the physics of gravitational waves, and the impact of radiative losses on gravitating systems. It concludes with a brief overview of alternative theories of gravity. Ideal for graduate courses on general relativity and relativistic astrophysics, the book examines real-life applications, such as planetary motion around the Sun, the timing of binary pulsars, and gravitational waves emitted by binary black holes. Text boxes explore related topics and provide historical context, and over 100 exercises present challenging tests of the material covered in the main text"--
Choose an application
Choose an application
This Element provides a somewhat comprehensive interpretation of general relativity, a description of what reality would be like if the theory were true. This concerns (i) what possibilities it represents, (ii) the internal structure of those possibilities and their interrelations, and, to some extent, (iii) how those possibilities differ from what's come before. By providing an interpretive foil that one can amplify or amend, it aspires to shape the research agenda in the foundations of general relativity for established philosophers of physics, graduate students searching for work in these topics, and other interested academics. This title is also available as Open Access on Cambridge Core.
Choose an application
Astrophysics. --- General relativity (Physics) --- Cosmology.
Choose an application
The 16th conference of the International Society on General Relativity and Gravitation (GR16), held at the International Convention Centre in Durban, South Africa, from 15 to 21 July, was attended by 450 delegates from around the world. The scientific programme comprised 18 plenary lectures, 1 public lecture and 19 workshops which, excepting 3 plenary lectures, are presented in this proceedings. It was the first major international conference on general relativity and gravitation held on the African continent.
General relativity (Physics) --- Gravitation --- Gravitational waves
Choose an application
This volume offers a comprehensive overview of our understanding of gravity at both the experimental and the theoretical level. Critical reviews by experts cover topics ranging from astrophysics (anisotropies in the cosmic microwave background, gamma ray bursts, neutron stars and astroparticles), cosmology, the status of gravitational wave sources and detectors, verification of Newton's law at short distances, the equivalence principle, gravito-magnetism, measurement theory, time machines and the foundations of Einstein's theory, to string theory and loop quantum gravity.
General relativity (Physics) --- Particles (Nuclear physics)
Choose an application
The thesis tackles two distinct problems of great interest in gravitational mechanics — one relativistic and one Newtonian. The relativistic one is concerned with the "first law of binary mechanics", a remarkably simple variational relation that plays a crucial role in the modern understanding of the gravitational two-body problem, thereby contributing to the effort to detect gravitational-wave signals from binary systems of black holes and neutron stars. The work reported in the thesis provides a mathematically elegant extension of previous results to compact objects that carry spin angular momentum and quadrupolar deformations, which more accurately represent astrophysical bodies than mere point particles. The Newtonian problem is concerned with the isochrone problem of celestial mechanics, namely the determination of the set of radial potentials whose bounded orbits have a radial period independent of the angular momentum. The thesis solves this problem completely in a geometrical way and explores its consequence on a variety of levels, in particular with a complete characterisation of isochrone orbits. The thesis is exceptional in the breadth of its scope and achievements. It is clearly and eloquently written, makes excellent use of images, provides careful explanations of the concepts and calculations, and it conveys the author’s personality in a way that is rare in scientific writing, while never sacrificing academic rigor.
Astrophysics --- Geophysics --- zwaartekracht --- astrofysica --- General relativity (Physics)
Choose an application
This book investigates Lorentzian structures in the four-dimensional space-time, supplemented either by a covector field of the time-direction or by a scalar field of the global time. Furthermore, it proposes a new metrizable model of gravity. In contrast to the usual General Relativity theory, where all ten components of the symmetric pseudo-metric are independent variables, the gravity model presented here essentially depends only on a single four-covector field, and is restricted to have only three-independent components. However, the author proves that the gravitational field, governed by the proposed model and generated by some massive body, resting and spherically symmetric in some coordinate system, is given by a pseudo-metric that coincides with the well known Schwarzschild metric from General Relativity. The Maxwell equations and electrodynamics are also investigated in the framework of the proposed model. In particular, the covariant formulation of electrodynamics of moving dielectrics and para/diamagnetic media is derived.
Geophysics --- zwaartekracht --- General relativity (Physics) --- Quantum electrodynamics.
Choose an application
Our vast Universe is filled with an enormous amount of matter and energy, which are the source of large gravitational potentials affecting all physical phenomena. Because this fact about the size and contents of the Universe was not known when our fundamental theories of dynamics and relativity were completed by the 1920s, the current theories - based as they are in empty space - fail to incorporate cosmic gravity. Though the current theories are consistent with the majority of empirical facts, there are some crucial discrepancies, which demand a drastic shift to a cosmic gravitational paradigm for the theories of relativity and dynamics. The book is a detailed and widely accessible account of this paradigm, called Cosmic Relativity, supported by ample empirical evidence. It is established that all motional relativistic effects are cosmic gravitational effects. The new theory of Cosmic Relativity solves and answers all outstanding questions and puzzles about dynamics and relativity.
Cosmology --- Geophysics --- zwaartekracht --- kosmologie --- General relativity (Physics)
Listing 1 - 10 of 152 | << page >> |
Sort by
|