Listing 1 - 10 of 46 | << page >> |
Sort by
|
Choose an application
Bases (Linear topological spaces) --- Bases (espaces vectoriels topologiques) --- Cone. --- Cône. --- Cône. --- Analyse fonctionnelle --- Functional analysis --- Espaces vectoriels topologiques ordonnés --- Linear topological spaces, Ordered --- Espaces vectoriels topologiques ordonnés. --- Espaces vectoriels topologiques ordonnés.
Choose an application
Functional analysis --- Compact spaces. --- Linear topological spaces. --- Locally convex spaces. --- Espaces vectoriels topologiques. --- Espaces compacts --- Compact spaces --- Espaces vectoriels topologiques
Choose an application
Analytical spaces --- Linear topological spaces --- Banach lattices --- Linear operators --- Positive operators --- 517.982 --- Linear spaces with topology and order or other structures --- 517.982 Linear spaces with topology and order or other structures --- Espaces vectoriels topologiques --- Opérateurs linéaires --- Opérateurs positifs --- Espaces vectoriels topologiques ordonnés --- Linear topological spaces, Ordered --- Espaces vectoriels topologiques ordonnés. --- Espaces vectoriels topologiques ordonnés.
Choose an application
Choose an application
Analytical spaces --- Linear topological spaces. --- Mathematics --- Mathématiques --- Mathématiques --- Espaces vectoriels topologiques --- Linear topological spaces --- Mathématiques.
Choose an application
Choose an application
Functional analysis --- Espaces vectoriels topologiques ordonnés. --- Linear topological spaces, Ordered --- Riesz spaces --- Mathematics --- Physical Sciences & Mathematics --- Calculus --- Mathematical Theory --- Riesz vector spaces --- Vector lattices --- Lattice theory --- Vector spaces --- Riesz spaces. --- Espaces vectoriels topologiques ordonnés.
Choose an application
Mathematical potential theory --- Cone. --- Convex domains. --- Potential theory (Mathematics) --- Potential theory (Mathematics). --- Espaces vectoriels topologiques ordonnés --- Linear topological spaces, Ordered --- Espaces vectoriels topologiques ordonnés. --- Géometrie convexe --- Linear topological spaces, Ordered. --- Géometrie convexe --- Theorie du potentiel
Choose an application
Choose an application
"The theory of interpolation spaces has its origin in the classical work of Riesz and Marcinkiewicz but had its first flowering in the years around 1960 with the pioneering work of Aronszajn, Calderón, Gagliardo, Krein, Lions and a few others. It is interesting to note that what originally triggered off this avalanche were concrete problems in the theory of elliptic boundary value problems related to the scale of Sobolev spaces. Later on, applications were found in many other areas of mathematics: harmonic analysis, approximation theory, theoretical numerical analysis, geometry of Banach spaces, nonlinear functional analysis, etc. Besides this the theory has a considerable internal beauty and must by now be regarded as an independent branch of analysis, with its own problems and methods. Further development in the 1970s and 1980s included the solution by the authors of this book of one of the outstanding questions in the theory of the real method, the K-divisibility problem. In a way, this book harvests the results of that solution, as well as drawing heavily on a classic paper by Aronszajn and Gagliardo, which appeared in 1965 but whose real importance was not realized until a decade later. This includes a systematic use of the language, if not the theory, of categories. In this way the book also opens up many new vistas which still have to be explored. This volume is the first of three planned books. Volume II will deal with the complex method, while Volume III will deal with applications."
Listing 1 - 10 of 46 | << page >> |
Sort by
|