Listing 1 - 9 of 9 |
Sort by
|
Choose an application
In this work we explore the Floquet theory for evolution equations of the form u'(t)+A_t u(t)=0 (t real) where the operators A_t periodically depend on t and the function u takes values in a UMD Banach space X.We impose a suitable condition on the operator family (A_t) and their common domain, in particular a decay condition for certain resolvents, to obtain the central result that all exponentially bounded solutions can be described as a superposition of a fixed family of Floquet solutions.
Bloch solution --- Lp setting --- Floquet theory --- periodic evolution equation --- superposition principle
Choose an application
This open access book makes quantum computing more accessible than ever before. A fast-growing field at the intersection of physics and computer science, quantum computing promises to have revolutionary capabilities far surpassing “classical” computation. Getting a grip on the science behind the hype can be tough: at its heart lies quantum mechanics, whose enigmatic concepts can be imposing for the novice. This classroom-tested textbook uses simple language, minimal math, and plenty of examples to explain the three key principles behind quantum computers: superposition, quantum measurement, and entanglement. It then goes on to explain how this quantum world opens up a whole new paradigm of computing. The book bridges the gap between popular science articles and advanced textbooks by making key ideas accessible with just high school physics as a prerequisite. Each unit is broken down into sections labelled by difficulty level, allowing the course to be tailored to the student’s experience of math and abstract reasoning. Problem sets and simulation-based labs of various levels reinforce the concepts described in the text and give the reader hands-on experience running quantum programs. This book can thus be used at the high school level after the AP or IB exams, in an extracurricular club, or as an independent project resource to give students a taste of what quantum computing is really about. At the college level, it can be used as a supplementary text to enhance a variety of courses in science and computing, or as a self-study guide for students who want to get ahead. Additionally, readers in business, finance, or industry will find it a quick and useful primer on the science behind computing’s future.
Particle & high-energy physics --- Computer science --- Teaching of a specific subject --- Quantum Physics --- Quantum Computing --- Computer Science, general --- Science Education --- Quantum Information Technology, Spintronics --- Computer Science --- Spintronics --- Open Access --- Introduction to quantum computing --- quantum computing textbook --- quantum computing for high school students --- introduction to quantum cryptography --- quantum gates --- quantum algorithms --- quantum superposition --- what is a qubit? --- quantum key distribution --- Quantum physics (quantum mechanics & quantum field theory) --- Mathematical theory of computation --- Science: general issues
Choose an application
The use of lightweight structures across several industries has become inevitable in today’s world given the ever-rising demand for improved fuel economy and resource efficiency. In the automotive industry, composites, reinforced plastics, and lightweight materials, such as aluminum and magnesium are being adopted by many OEMs at increasing rates to reduce vehicle mass and develop efficient new lightweight designs. Automotive weight reduction with high-strength steel is also witnessing major ongoing efforts to design novel damage-controlled forming processes for a new generation of efficient, lightweight steel components. Although great progress has been made over the past decades in understanding the thermomechanical behavior of these materials, their extensive use as lightweight solutions is still limited due to numerous challenges that play a key role in cost competitiveness. Hence, significant research efforts are still required to fully understand the anisotropic material behavior, failure mechanisms, and, most importantly, the interplay between industrial processing, microstructure development, and the resulting properties. This Special Issue reprint book features concise reports on the current status in the field. The topics discussed herein include areas of manufacturing and processing technologies of materials for lightweight applications, innovative microstructure and process design concepts, and advanced characterization techniques combined with modeling of material’s behavior.
n/a --- microstructure --- Mg-Al-Ba-Ca alloy --- strength --- severe plastic deformation --- hot working --- surface roughness --- high pressure torsion extrusion --- optimization --- fatigue fracture behavior --- magnesium alloys --- de-coring --- formability --- multilayered sheets --- HPDC --- spring-back --- contact heat transfer --- mechanical properties --- bending --- in-die quenching --- equivalent strain --- light metals --- processing --- heat transfer --- damage --- creep aging --- thin-walled profile --- rolling --- aluminum alloy --- transmission line fittings --- ceramic core --- processing map --- automated void recognition --- FEA --- multi-output porthole extrusion --- density --- kinetic analysis --- texture --- non-ferrous alloys --- material characterization --- stress superposition --- hot stamping --- metal flow --- hybrid composite material --- V-bending test --- finite element model --- aluminium alloy --- shear lap test --- Al-Cu-Mg alloy --- characterization
Choose an application
Although scientific computing is very often associated with numeric computations, the use of computer algebra methods in scientific computing has obtained considerable attention in the last two decades. Computer algebra methods are especially suitable for parametric analysis of the key properties of systems arising in scientific computing. The expression-based computational answers generally provided by these methods are very appealing as they directly relate properties to parameters and speed up testing and tuning of mathematical models through all their possible behaviors. This book contains 8 original research articles dealing with a broad range of topics, ranging from algorithms, data structures, and implementation techniques for high-performance sparse multivariate polynomial arithmetic over the integers and rational numbers over methods for certifying the isolated zeros of polynomial systems to computer algebra problems in quantum computing.
superposition --- SU(2) --- pseudo-remainder --- interval methods --- sparse polynomials --- element order --- Henneberg-type minimal surface --- timelike axis --- combinatorial decompositions --- sparse data structures --- mutually unbiased bases --- invariant surfaces --- projective special unitary group --- Minkowski 4-space --- free resolutions --- Dini-type helicoidal hypersurface --- linearity --- integrability --- Galois rings --- minimum point --- entanglement --- degree --- pseudo-division --- computational algebra --- polynomial arithmetic --- projective special linear group --- normal form --- Galois fields --- Gauss map --- implicit equation --- number of elements of the same order --- Weierstrass representation --- Lotka–Volterra system --- isolated zeros --- polynomial modules --- over-determined polynomial system --- simple Kn-group --- sum of squares --- four-dimensional space
Choose an application
The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences.
Technology: general issues --- History of engineering & technology --- neuron PID --- Kalman filtering --- omnidirectional mobile robot --- implementations --- anti-windup --- fault tolerance --- reconfigurable control --- Maglev --- neural networks --- artificial intelligence --- unmanned tracked vehicle --- inertial parameters --- vehicle-terrain interaction --- identification --- recursive least square with exponential forgetting --- generalized Newton–Raphson --- Unscented Kalman Filter --- lane keeping control (LKC) --- non-smooth finite-time control --- previewed tracking --- error weight superposition --- electric vehicle (EV) --- ODD-based AD function design --- path tracking --- path planning --- software architecture --- interface design --- autonomous vehicle --- advanced driver-assistance system --- LPV approach --- robust control --- cruise control --- semi-active suspension control --- passenger comfort --- automated vehicles --- ADAS/AD functions --- C-ITS --- IVIM --- infrastructure assistance --- routing recommendations --- autonomous driving --- active learning --- formal methods --- model-based engineering --- automata learning --- unmanned vehicle --- nonlinear model prediction controller --- trajectory tracking --- outdoor field test --- vehicle following --- path following --- splines --- spline approximation --- n/a --- generalized Newton-Raphson
Choose an application
The first quantum revolution started in the early 20th century and gave us new rules that govern physical reality. Accordingly, many devices that changed dramatically our lifestyle, such as transistors, medical scanners and lasers, appeared in the market. This was the origin of quantum technology, which allows us to organize and control the components of a complex system governed by the laws of quantum physics. This is in sharp contrast to conventional technology, which can only be understood within the framework of classical mechanics. We are now in the middle of a second quantum revolution. Although quantum mechanics is nowadays a mature discipline, quantum engineering as a technology is now emerging in its own right. We are about to manipulate and sense individual particles, measuring and exploiting their quantum properties. This is bringing major technical advances in many different areas, including computing, sensors, simulations, cryptography and telecommunications. The present collection of selected papers is a clear demonstration of the tremendous vitality of the field. The issue is composed of contributions from world leading researchers in quantum optics and quantum information, and presents viewpoints, both theoretical and experimental, on a variety of modern problems.
entangled states --- two atoms --- two-modes --- cavity QED setup --- entanglement --- interference phenomenon --- superposition of quantum states --- quantum tomograms --- quantum optics --- nonclassicality --- quantum resource theories --- non-Gaussianity --- photon-number-resolving detectors --- multiport devices --- Fock states --- quantum tomography --- photon losses --- relativistic dynamics --- no-interaction theorem --- world line condition --- circular gauge --- Landau gauge --- arbitrary linear gauge --- stepwise variation --- center-of-orbit coordinates --- relative coordinates --- elliptic and hyperbolic solenoids --- angular momentum --- magnetic moment --- squeezing --- mutually unbiased bases --- group representations --- graphs --- quantum information --- E = mc2 from Heisenberg’s uncertainty relations --- one symmetry for quantum mechanics and special relativity --- coherent states --- harmonic oscillator --- SU(2) coherent states --- 2D coherent states --- resolution of the identity --- uncertainty principle --- isotropic harmonic oscillator --- anisotropic harmonic oscillator --- Sudarshan --- apology --- non-hermitian operators --- real spectrum --- nonlinear algebras --- nonclassical states --- bound entanglement --- entanglement witness --- Hilbert–Schmidt measure --- optimization algorithms --- probability representation --- quantizer–dequantizer --- qubit --- quantum suprematism --- n/a --- E = mc2 from Heisenberg's uncertainty relations --- Hilbert-Schmidt measure --- quantizer-dequantizer --- Research.
Choose an application
Quantum field theory has achieved some extraordinary successes over the past sixty years; however, it retains a set of challenging problems. It is not yet able to describe gravity in a mathematically consistent manner. CP violation remains unexplained. Grand unified theories have been eliminated by experiment, and a viable unification model has yet to replace them. Even the highly successful quantum chromodynamics, despite significant computational achievements, struggles to provide theoretical insight into the low-energy regime of quark physics, where the nature and structure of hadrons are determined. The only proposal for resolving the fine-tuning problem, low-energy supersymmetry, has been eliminated by results from the LHC. Since mathematics is the true and proper language for quantitative physical models, we expect new mathematical constructions to provide insight into physical phenomena and fresh approaches for building physical theories.
Research & information: general --- Physics --- semiheaps --- ternary algebras --- para-associativity --- quantum mechanics --- gravity --- Clairaut equation --- Cho–Duan–Ge decomposition --- constraintless formalism --- canonical gravity --- covariance --- black holes --- quantum foundations --- non-axiomaticity --- detector clicks --- ensembles --- superposition principle --- arithmetic --- numbers --- vector space --- abstracting --- interpretations --- self-referentiality --- direct product --- direct power --- polyadic semigroup --- arity --- polyadic ring --- polyadic field --- Maxwell’s vacuum equations --- Hamilton–Jacobi equation --- Klein–Gordon–Fock equation --- algebra of symmetry operators --- separation of variables --- linear partial differential equations --- Einstein field equation --- recursion operator --- Noether symmetry --- master symmetry --- conformable differential --- Poisson manifold --- diffeomorphism group --- current algebra symmetry --- current Lie algebra representation --- fock space --- generating functional --- distribution functions --- Lie–Poisson structure --- coherent states --- Lie-Poisson action --- Hilbert space linearization --- hamiltonian systems --- symmetry reduction --- integrability --- idiabatic states --- factorization --- heavenly type dynamical systems --- integrable dynamical systems --- dirac reduction --- hydrodynamic flows --- entropy --- vortex flows --- asymptotic conditions --- Kirchhoff’s integral theorem --- quantum gravity and the problem of the Big Bang --- hidden Hermitian formulations of quantum mechanics --- stationary Wheeler-DeWitt system --- physical Hilbert space metric --- non-stationary Wheeler-DeWitt system --- n/a --- Cho-Duan-Ge decomposition --- Maxwell's vacuum equations --- Hamilton-Jacobi equation --- Klein-Gordon-Fock equation --- Lie-Poisson structure --- Kirchhoff's integral theorem
Choose an application
Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC.
visible light communication (VLC) --- dimming control --- constant transmission efficiency --- error performance --- light-emitting diode (LED) --- visible light communications --- deep learning --- bit error rate --- orthogonal frequency division multiplexing --- index modulation --- POF --- FSO --- LiFi --- LED --- orthogonal frequency division multiplexing (OFDM) --- power efficiency --- peak-to-average-power ratio (PAPR) --- pre-distorted enhanced --- underwater optical wireless communication (UOWC) --- ADO-OFDM --- gamma–gamma function --- full-duplex --- long-reach --- photon counting --- vehicular visible light communication (VVLC) --- intelligent reflecting surface (IRS) --- the number of mirrors --- energy efficiency (EE) --- carrierless amplitude and phase (CAP) modulation --- pairwise coding (PWC) --- dual-mode index modulation (DM) --- chaotic encryption --- visible light positioning (VLP) --- free-space communication --- RGB LED --- non-orthogonal multiple access (NOMA) --- superposition constellation adjustment --- successive interference cancellation --- bit error ratio --- NOMA triangle --- underwater wireless optical communication --- temporal dispersion --- bandwidth limitation --- Monte Carlo method --- maximum likelihood sequence estimation --- visible light communication --- nonlinear equalization --- reservoir computing --- neural network (NN) --- autoencoder (AE) --- transceiver design --- nonlinearity --- VLC --- predistortion --- coefficient approximation --- BLSTM --- orthogonal frequency-division multiplexing --- sampling frequency offset --- visible light communications (VLC) --- mmWave communications --- channel modeling --- channel propagation characteristics --- path loss --- delay spread (DS) --- Ricean K-factor --- cluster characteristics --- n/a --- gamma-gamma function
Choose an application
This book presents collective works published in the recent Special Issue (SI) entitled "Aero/Hydrodynamics and Symmetry". These works address the existence of symmetry and its breakdown in aero-/hydro-dynamics and their related applications. The presented problems are complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics phenomena. The applications vary and range from polymer chain transfer in micro-channel to the evaluation of vertical axis wind turbines, as well as autonomous underwater hovering vehicles. Recent advances in numerical, theoretical, and experimental methodologies, as well as finding new physics, new methodological developments, and their limitations are presented within the scope of the current book. Among others, in the presented works, special attention is paid to validation and improving the accuracy of the presented methodologies. This book brings together a collection of inter-/multi-disciplinary works applied to many engineering applications in a coherent manner.
Savonius vertical axis wind turbine --- horizontal overlap ratio --- vertical overlap ratio --- torque coefficient --- power coefficient --- Advection–diffusion --- fractional derivative --- concentrated source --- integral transform --- Burgers’ fluid --- velocity field --- shear stress --- Laplace transform --- modified Bessel function --- Stehfest’s algorithm --- MATHCAD --- electroosmotic flow --- power law fluid --- nanoparticles --- MHD --- entropy generation --- convergence analysis --- residual error --- autonomous underwater vehicle (AUV) --- airborne-launched AUV --- autonomous underwater hovering vehicle (AUH) --- water entry impact force --- computational fluid dynamics (CFD) --- two-phase flow --- Autonomous Underwater Vehicle (AUV) --- Autonomous Underwater Hovering Vehicle (AUH) --- hydrodynamic interaction --- response amplitude operator (RAO) --- wave effects --- symmetric flying wing --- plasma flow control --- energy --- stall --- dimensionless frequency --- particle image velocimetry --- SA–NaAlg fluid --- porosity --- fractional model --- Atangana–Baleanu derivative --- large eddy simulation --- subgrid scale model --- diffuser --- dynamic one equation model --- Vreman model --- separation --- heat conduction --- non-fourier --- solution structure theorems --- superposition approach --- Buongiorno model --- unsteady flow --- nanoliquid --- special third-grade liquid --- non-linear thermal radiation --- magneto hydro-dynamics (MHD) --- dissipative particle dynamics (DPD) --- Hartmann number (Ha-value) --- harmony bond coefficient or spring constant (K)
Listing 1 - 9 of 9 |
Sort by
|