Listing 1 - 2 of 2 |
Sort by
|
Choose an application
The extraction and exploration of cellulose-based polymers is an exciting area of research. For many years, wood (especially from bleached kraft wood pulp) was considered the main source of cellulosic compounds because of its abundance in nature. However, in the past decade, researchers have been devoted to finding alternatives to extract cellulose from byproducts of agricultural crops and/or textile wastes, which are both highly available at a very reduced raw material cost. This book brings together original research that details the recent progresses and new developments in this field, and how this research is contributing to a circular economy.
citrus sinensis --- nano-fibrillated cellulose --- silver nanoparticles --- acid hydrolysis --- heavy metal sorption --- anaerobic digestion --- biofuel --- biomass --- cotton-based waste --- closed-loop --- lignocellulose --- textile waste --- cellulose nanofibre --- green materials --- biopolymers --- environmental --- recycled newspaper --- composite laminates --- water resistance --- high strength --- cotton wastes --- textile --- nanomaterials --- cellulose nanocrystal --- extraction methods --- environmental application --- regenerated cellulose fiber --- Au NP --- controllably assembled --- SERS --- dimetridazole --- cellulose hydrogel --- thermo-responsive --- sustained release --- silver sulfadiazine --- burn wound --- polymer --- carpet fiber --- direct analysis in real time --- time of flight --- mass spectrometry --- function switching --- oleamide --- cellulose nanofibers isolation --- carpet wastes --- supercritical carbon dioxide --- enhanced properties --- recovery of cellulose --- textile fibers --- eco-efficiency --- circular economy --- textile industry --- n/a
Choose an application
Although 30% of the healthy human population is colonized with various Staphylococcus species, some staphylococcal strains, referred to as opportunistic pathogens, can cause minor to life-threatening diseases. The pathogenicity of these bacteria depends on their virulence factors and the robustness of the regulatory networks expressing these virulence factors. Virulence factors of pathogenic Staphylococcus spp. consist of numerous toxins, enterotoxins (some of which act as superantigens), enzymes, and proteins (cytoplasmic, extracellular, and surface) that are regulated by two-component (TC) and quorum-sensing (QS) regulatory networks. To enter this niche, some other Staphylococcus species, such as Staphylococcus simulans, produce a potent endopeptidase called lysostaphin, which can inhibit the growth of pathogenic S. aureus. Some other Staphylococcus species produce autolysins and cationic peptides to win the intra- and inter-species competition. The outcome of this microbial invasion depends not only on pathogenic factors but also on the host’s internal and external defense mechanisms, including a healthy skin microbiome. A healthy skin microbiome population can prevent colonization by other major pathogens. As normal host microflora, these commensals establish a complex relationship with the host as well as the surrounding microbial communities. This Special Issue of Microorganisms is focused on studies and recent advancements in our understanding of staphylococcal virulence mechanisms that enable Staphylococcus spp. either to successfully establish themselves as a colonizer or to overcome the host’s defense system to cause infection along with our effort to make an anti-staphylococcal vaccine.
biofilm --- MRSA --- silver ion --- silver sulfadiazine --- wound infections --- Staphylococcus aureus --- methicillin resistance --- human infection --- CC130 --- biomaterials --- medical devices --- HL-60 cells --- PMNs --- endotracheal tube --- titanium --- implantable devices --- nosocomial diseases --- Staphylococcus lugdunensis --- sortase A --- surface proteins --- LPXTG --- small colony variants --- influenza virus --- super-infection --- pro-inflammatory response --- rural Ghana --- molecular epidemiology --- chronic wounds --- invasive disease --- surgery-associated infection --- sepsis --- SA4Ag vaccine --- conjugated polysaccharide --- ClfA --- MntC --- protection --- animal models --- phase variation --- Staphylococcus epidermidis --- microbiota --- multidrug resistance --- genome sequencing --- phylogenetic analyses --- arthroplasty surgery --- methicillin-resistant Staphylococcus aureus (MRSA) --- community-associated MRSA (CA-MRSA) --- CA-MRSA strain USA300 --- murine skin infection model --- dermatopathology --- dermonecrosis --- neutrophil --- host antibacterial response --- cytokine --- chemokine --- physiology --- metabolism --- carbon catabolite repression --- CcpA --- HPr --- colonization --- mouse --- JSNZ --- aurintricarboxylic acid --- ATA --- adhesion inhibitor --- mupirocin --- nose --- superantigen --- mastitis --- food intoxication --- regulation --- sec variants --- CM lipids --- daptomycin resistance --- resensitization --- n/a
Listing 1 - 2 of 2 |
Sort by
|