Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
The unification between gravity and quantum field theory is one of the major problems in contemporary fundamental Physics. It exists for almost one century, but a final answer is yet to be found. Although string theory and loop quantum gravity have brought many answers to the quantum gravity problem, they also came with a large set of extra questions. In addition to these last two techniques, many other alternative theories have emerged along the decades. This book presents a series of selected chapters written by renowned authors. Each chapter treats gravity and its quantization through known and alternative techniques, aiming a deeper understanding on the quantum nature of gravity. Quantum Gravity is a book where the reader will find a fine collection of physical and mathematical concepts, an up to date research, about the challenging puzzle of quantum gravity.
Choose an application
Following the fundamental insights from quantum mechanics and general relativity, geometry itself should have a quantum description; the search for a complete understanding of this description is what drives the field of quantum gravity. Group field theory is an ambitious framework in which theories of quantum geometry are formulated, incorporating successful ideas from the fields of matrix models, ten-sor models, spin foam models and loop quantum gravity, as well as from the broader areas of quantum field theory and mathematical physics. This special issue collects recent work in group field theory and these related approaches, as well as other neighbouring fields (e.g., cosmology, quantum information and quantum foundations, statistical physics) to the extent that these are directly relevant to quantum gravity research.
quantum-gravity phenomenology --- hypersurface deformation algebra --- loop quantum gravity --- black holes --- no-boundary proposal --- loop quantum cosmology --- LQC instanton --- quantum gravity --- computer simulations --- numerical methods --- renormalization group --- discrete quantum gravity models --- nonperturbative renormalization group --- random geometry --- mimetic gravity --- limiting curvature --- bouncing cosmology --- effective field theory --- quantum geometry --- quantum cosmology --- group field theory --- cosmological perturbation theory --- Lewis-Riesenfeld invariant --- Bogoliubov transformation --- adiabatic vacua --- Spin networks --- vertex amplitudes --- quantum computing --- background independence --- generalised statistical equilibrium --- entropy --- holographic entanglement --- random tensor networks --- quantum many-body physics
Choose an application
"The aim of this two-volume title is to give a comprehensive review of one hundred years of development of general relativity and its scientific influences. This unique title provides a broad introduction and review to the fascinating and profound subject of general relativity, its historical development, its important theoretical consequences, gravitational wave detection and applications to astrophysics and cosmology. The series focuses on five aspects of the theory: Genesis, Solutions and Energy ; Empirical Foundations ; Gravitational Waves ; Cosmology; Quantum Gravity. The first three topics are covered in Volume 1 and the remaining two are covered in Volume 2. While this is a two-volume title, it is designed so that each volume can be a standalone reference volume for the related topic."--Publisher's website.
General relativity (Physics) --- Gravitational waves --- Cosmology --- Quantum gravity --- History --- Gravitational waves. --- Cosmology. --- Quantum gravity. --- Gravity, Quantum --- Gravitation --- Quantum theory --- Astronomy --- Deism --- Metaphysics --- Gravitational radiation --- Gravity waves (Astrophysics) --- Gravitational fields --- Radiation --- Waves --- Relativistic theory of gravitation --- Relativity theory, General --- Physics --- Relativity (Physics) --- History. --- General relativity (Physics) - History --- General Relativity --- Quantum Gravity --- Gravitational Waves
Choose an application
This book is a compilation of enlightening tutorial essays, showcasing the forefront of research by exceptional female scientists. This invaluable collection provides graduate students and researchers in the field with an engaging and pedagogical introduction to a wide range of compelling topics. Delve into the depths of theoretical and observational realms, exploring intriguing subjects including modified gravity models, quantum gravity, fields in curved space-time, particle dynamics, gravitational waves, and enigmatic black holes. Embracing both the theoretical foundations and the practical applications, this comprehensive edited volume offers an accessible and all-encompassing panorama of gravity and cosmology. Moreover, it shines a much-needed spotlight on the significant contributions made by remarkable women across the globe, fostering recognition and admiration for their indispensable role in shaping this ever-evolving field.
Gravitation. --- Cosmology. --- Elementary particles (Physics). --- Quantum field theory. --- Mathematical physics. --- Astrophysics. --- Classical and Quantum Gravity. --- Elementary Particles, Quantum Field Theory. --- Theoretical, Mathematical and Computational Physics. --- Particles (Nuclear physics)
Choose an application
"The four volumes of the proceedings of MG14 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 35 morning plenary talks over 6 days, 6 evening popular talks and 100 parallel sessions on 84 topics over 4 afternoons. Volume A contains plenary and review talks ranging from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. The remaining volumes include parallel sessions which touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational wave detectors and data analysis, precision gravitational measurements, loop quantum gravity, quantum cosmology, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity"--
Binary Systems --- Astrophysics --- Loop Quantum Gravity --- Gravitational Wave Detectors and Data Analysis --- Black Hole Thermodynamics --- Active Galactic Nuclei --- Observational Cosmology --- Gravitational Wave --- X-ray Sources --- Dark Matter --- General Relativity --- Cosmic Rays --- Inflation --- Numerical Relativity --- Neutrinos --- Theoretical Physics --- Large Scale Structure --- Inhomogeneous Cosmology --- Radiative Transfer --- Supernova --- Gravitation --- Black Hole --- White Dwarf --- Precision Gravitational Measurements --- Quantum Gravity --- Quantum Cosmology --- Einstein-Maxwell Systems --- String Theory --- Cosmic Microwave Background Anisotropies --- Accretion Disks --- Neutron Star --- Gravitational Lensing --- Exact Solutions of Einstein's Equations --- Early Universe Models --- Wormholes --- Cosmology --- Pulsar --- Gamma Ray Burst
Choose an application
This book celebrates the 80 years of the Professor Eugene P. Wigner paper “On Unitary Representations of the Inhomogeneous Lorentz Group", published in The Annals of Mathematics in 1939. We have collected several contributions divided into Research articles and Reviews. All contributions are technical, but the papers also bring a health element of didactic. Practitioners from several areas, from Gravity to Quantum Field Theory and Quantum Mechanics, as well as students, shall find a rich material in this Volume.
spinors in 4d --- regularization --- anomalies --- quantum gravity --- quantum mechanics --- symmetry --- quantum cosmology --- special relativity --- combination of velocities --- wigner angle --- quaternions --- gauge field theory --- Yang-Mills fields --- modified gravity --- non-Riemannian geometry --- spacetime symmetries --- gauge field theories --- gauge anomalies --- nonperturbative techniques --- ray representation --- strongly continuous --- continuity --- Hilbert space --- entanglement --- bispinors --- chirality --- n/a
Choose an application
Within the second half of the last century, quantum cosmology concretely became one of the main research lines within gravitational theory and cosmology. Substantial progress has been made. Furthermore, quantum cosmology can become a domain that will gradually develop further over the next handful of decades, perhaps assisted by technological developments. Indications for new physics (i.e., beyond the standard model of particle physics or general relativity) could emerge and then the observable universe would surely be seen from quite a new perspective. This motivates bringing quantum cosmology to more research groups and individuals.This Special Issue (SI) aims to provide a wide set of reviews, ranging from foundational issues to (very) recent advancing discussions. Concretely, we want to inspire new work proposing observational tests, providing an aggregated set of contributions, covering several lines, some of which are thoroughly explored, some allowing progress, and others much unexplored. The aim of this SI is motivate new researchers to employ and further develop quantum cosmology over the forthcoming decades. Textbooks and reviews exist on the present subject, and this SI will complementarily assist in offering open access to a set of wide-ranging reviews. Hopefully, this will assist new interested researchers, in having a single open access online volume, with reviews that can help. In particular, this will help in selecting what to explore, what to read in more detail, where to proceed, and what to investigate further within quantum cosmology.
string cosmology --- quantum cosmology --- Wheeler-DeWitt equation --- loop quantum cosmology --- observations --- classical and quantum cosmology --- time --- quantum fields in curved spacetime --- Brans–Dicke theory --- bounce models --- de Broglie–Bohm interpretation --- quantum geometrodynamics --- extended theories of gravity --- dark energy singularities --- quantum gravity --- Hawking radiation --- entanglement entropy --- uniqueness of the quantization --- polymer quantum mechanics --- bounce --- no-boundary proposal --- instantons --- multiverse --- superspace --- third quantisation --- universe–antiuniverse pair --- weyl curvature hypothesis --- early universe cosmology --- singularity and bounce --- cyclic universe --- quantum fields --- backreaction effects --- supersymmetry --- noncommutativity --- generalized uncertainty principles --- canonical quantum gravity --- clocks --- noether symmetries --- ADM formalism --- exact solutions --- supersymmetric quantum mechanics --- shape invariant potentials --- supersymmetric quantum cosmology --- n/a --- Brans-Dicke theory --- de Broglie-Bohm interpretation --- universe-antiuniverse pair
Choose an application
The multiverse is a concept that acknowledges the existence of a multiplicity of worlds or universes. The designs of these universes do not have to be the same as our universe, but we have no clear view of what the “other” designs might be. It is suspected that they can obey different laws of physics and different constants of physics, which further implies different chemistry, biology, and life. Some say that the universes within the multiverse allow for different mathematics or even for different metamathematical logic. This book discusses most of the above aspects of the multiverse concept starting with the philosophy, through all the mathematical and physical subtleties, finally exploring the origin of life and consciousness. This book provides a satisfying intellectual exploration of front-edge advances in contemporary cosmology.
multiverse --- Leibniz --- other worlds --- multiverse levels --- habitability --- stars --- quantum cosmology --- origin of the universe --- time reversal symmetry --- planets --- life --- varying constants --- anthropic principle --- multiverse entanglement --- multiverse tests --- mass extinctions --- string theory --- string landscape --- dark energy --- creation from nothing --- soft entry --- quantum gravity --- Wheeler-de Witt-equation --- Bohm-like interpretation --- volume-quantisation --- space atoms --- information storage and transfer --- philosophy of multiverse --- categories of multiverses --- different physics universes --- superstring multiverse --- dark multiverse --- universe-antiuniverse pair creation --- multiverse habitability: stars, planets, life, consciousness --- falsifiability of multiverses
Choose an application
"Holographic Quantum Matter describes a new field that has emerged in the past decade at the interface of condensed matter physics and quantum gravity. Experimental discoveries in condensed matter have led to the identification of numerous materials--like high temperature superconductors (HTS)--in which the collective motion of electrons requires deeper understand of quantum effects at large length scales. HTS's act as a "strange metal" in which the charge and energy is not carried by quasiparticles. In the meantime, studies of quantum gravity using string theory led to a major breakthrough with the identification of a mathematical tool known as the holographic correspondence. The authors describe the developments that followed with the realization that states of quantum matter without quasiparticle excitations are precisely those that are efficiently described by the holographic correspondence. The book is addressed to graduate students in theoretical physics, especially those specializing in condensed matter, string theory, or quantum field theory. It presents the necessary background in the study of quantum matter and in string theory, so that students in both fields are apprised of recent developments in the other field. It connects this introductory discussion to what are the most important recent developments. It provides the tools and motivation for performing holographic computations. And it explains how the salient technical results from holographic studies have led to new insights into quantum matter"--
Holography. --- Duality (Nuclear physics) --- Condensed matter. --- Condensed materials --- Condensed media --- Condensed phase --- Materials, Condensed --- Media, Condensed --- Phase, Condensed --- Liquids --- Matter --- Solids --- Nuclear reactions --- Scattering (Physics) --- Laser photography --- Lensless photography --- Photography, Lensless --- Wavefront reconstruction imaging --- Diffraction --- Holographic interferometry --- Interference (Light) --- Interferometry --- Laser recording --- Photonics --- Speckle metrology --- Three-dimensional display systems --- quantum matter --- holographic --- condensed matter --- condensed matter physics --- quantum --- quantum field theory --- holographic duality --- duality --- black hole --- superconductors --- theoretical physics --- quantum gravity --- holographic principle --- gauge theory --- string theory --- cosmology --- adSCFT correspondence --- anti-de Sitterconformal field theory correspondence --- Maldacena duality --- gaugegravity duality --- holographic correspondence
Choose an application
This open access monograph offers a detailed study and a systematic defense of a key intuition we typically have, as human beings, with respect to the nature of time: the intuition that the future is open, whereas the past is fixed. For example, whereas it seems unsettled whether there will be a fourth world war, it is settled that there was a first world war. The book contributes, in particular, three major and original insights. First, it provides a coherent, non-metaphorical, and metaphysically illuminating elucidation of the intuition. Second, it determines which model of the temporal structure of the world is most appropriate to accommodate the intuition, and settles on a specific version of the Growing Block Theory of time (GBT). Third, it puts forward a naturalistic foundation for GBT, by exploiting recent results of our best physics (viz. General Relativity, Quantum Mechanics, and Quantum Gravity). Three main challenges are addressed: the dismissal of temporal asymmetries as non-fundamental phenomena only (e.g., thermodynamic or causal phenomena), the epistemic objection against GBT, and the apparent tension between GBT and relativistic physics. It is argued that the asymmetry between the open future and the fixed past must be grounded in the temporal structure of the world, and that this is neither precluded by our epistemic device, nor by the latest approaches to Quantum Gravity ( e.g., the Causal Set Theory). Aiming at reconciling time as we find it in ordinary experience and time as physics describes it, this innovative book will raise the interest of both academic researchers and graduate students working on the philosophy of time. More generally, it presents contents of interest for all metaphysicians and non-dogmatic philosophers of physics.
Philosophy of science --- Philosophy: metaphysics & ontology --- Relativity physics --- Quantum physics (quantum mechanics & quantum field theory) --- Open Future concept --- Fixed Past concept --- Future Contingents of time --- Bivalence --- Indeterminism --- Metaphysical Indeterminacy --- Temporal Becoming --- A-theory of Time --- Growing Block Theory --- Quantum Gravity --- Causal Set Theory --- Time-Travel --- Science --- Ontology. --- Metaphysics. --- Relativity (Physics). --- Gravitation. --- Quantum physics. --- Philosophy of Science. --- Alternative Relativity. --- Quantum Physics. --- Philosophy. --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Physics --- Mechanics --- Thermodynamics --- Field theory (Physics) --- Matter --- Antigravity --- Centrifugal force --- Relativity (Physics) --- Gravitation --- Nonrelativistic quantum mechanics --- Space and time --- Philosophy --- God --- Ontology --- Philosophy of mind --- Being --- Metaphysics --- Necessity (Philosophy) --- Substance (Philosophy) --- Normal science --- Properties
Listing 1 - 10 of 14 | << page >> |
Sort by
|