Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

Vlaams Parlement (2)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2021 (2)

Listing 1 - 2 of 2
Sort by

Book
Assessment of Environmental Radioactivity and Radiation for Human Health Risk
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ten years have passed since the nuclear accident occurred in Fukushima, Japan, following the Great East Japan earthquake. Thereafter, many people around the world have been concerned about the risks posed by radiation. They still believe that even a small amount of radiation exposure will affect human health. In reality, however, there are many natural radionuclides in the environment, which emit a variety of types of radiation. Although it is well known that there is a positively linear relationship between acute radiation exposure and cancer risk in atomic bomb survivors, the risk of chronic radiation exposure due to natural radionuclides cannot be well explained to people who have lived in high-background radiation areas for many generations. Therefore, more studies in this research field are required to obtain new scientific findings. In order to promote further scientific activities, it will be the best for us to understand the current status of this field by summarizing what we have apprehended so far. This Special Issue will highlight measurement data, methodologies, radiation biology, and risk assessment related to radiation.

Keywords

air dose rate --- difficult-to-return zone --- evacuation order-lifted areas --- effective dose rate --- external exposure risk --- Fukushima Daiichi Nuclear Power Station accident --- living space --- radiocesium --- surface soil --- Tomioka town --- tritium monitoring --- fusion test facility --- deuterium plasma experiment --- monthly precipitation --- chemical composition --- Fukushima Daiichi Nuclear Power Plant --- strontium-90 --- cesium-137 --- seawater monitoring --- contaminated water --- dose assessment --- Japan --- bottled water --- guidance level --- WHO --- natural radionuclides --- artificial radionuclides --- effective dose --- ingestion --- passive radon monitor --- development --- sensitivity --- detection limit --- air-exchange rate --- total diet study --- radioactive cesium --- potassium-40 --- dietary intake --- Fukushima accident --- 222Rn progeny --- 220Rn progeny --- CR-39 --- equilibrium equivalent concentration --- deposition velocity --- thoron --- thoron progeny --- indoor environment --- measurement technique --- radioactivity --- residential exposure --- dose --- gamma radiation --- health risk --- radon mapping --- 226Ra --- 228Ra --- 238U --- well water --- radiological hazards --- REE and uranium mines --- northern Vietnam --- radon --- hot spring --- public health --- Namie Town --- cesium-134 --- external exposure dose evaluation --- radon concentration --- groundwater --- residence time --- limestone aquifer --- Okinawa Island --- indoor --- environment --- nationwide survey --- SSNTD --- radon potential map --- geography information systems --- geology --- risk --- exhalation rate --- long-term measurement --- seasonal variation --- Fukushima --- free-roaming cat --- reproductive organ --- internal contamination


Book
Molecular Basis of Apomixis in Plants
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Apomixis is the consequence of a concerted mechanism that harnesses the sexual machinery and coordinates developmental steps in the ovule to produce an asexual (clonal) seed. Altered sexual developments involve widely characterized functional and anatomical changes in meiosis, gametogenesis, and embryo and endosperm formation. The ovules of apomictic plants skip meiosis and form unreduced female gametophytes whose egg cells develop into a parthenogenetic embryo, and the central cells may or may not fuse to a sperm to develop the seed endosperm. Thus, functional apomixis involves at least three components, apomeiosis, parthenogenesis, and endosperm development, modified from sexual reproduction that must be coordinated at the molecular level to progress through the developmental steps and form a clonal seed. Despite recent progress uncovering specific genes related to apomixis-like phenotypes and the formation of clonal seeds, the molecular basis and regulatorynetwork of apomixis is still unknown. This is a central problem underlying the current limitations of apomixis breeding. This book collates twelve publications addressing different topics around the molecular basis of apomixis, illustrating recent discoveries and advances toward understanding the genetic regulation of the trait, discussing the possible origins of apomixis and the remaining challenges for its commercial deployment in plants.

Listing 1 - 2 of 2
Sort by