Narrow your search

Library

KU Leuven (30)

LUCA School of Arts (30)

Odisee (30)

Thomas More Kempen (30)

Thomas More Mechelen (30)

UCLL (30)

VIVES (30)

Vlaams Parlement (30)

FARO (29)

ULiège (11)

More...

Resource type

book (29)

periodical (1)


Language

English (30)


Year
From To Submit

2024 (1)

2022 (6)

2021 (10)

2020 (8)

2019 (4)

More...
Listing 1 - 10 of 30 << page
of 3
>>
Sort by

Book
Spectroscopic ellipsometry of interfacial phase transitions in fluid metallic systems: KxKCl1-x and Ga1-xBix [online]
Author:
Year: 2004 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

The investigation of the interfacial phase transitions in fluid systems with short-range intermetallic interactions are of great interest. The phenomena were studied in two systems exhibiting a liquid-liquid miscibility gap: at the fluid/wall interface in fluid KxKCl1-x and at the fluid/vacuum interface of the Ga1 xBix alloys. To characterize the interfacial changes of the ultra thin films (composition, thickness and their evolution with time) the spectroscopic ellipsometry was performed over a wide spectral range. Whereas in the experiments on KxKCl1-x an existing ellipsometer could be used, a completely new UHV-apparatus including the in-situ phase modulation ellipsometer had to be developed for Ga1 xBix alloys. For the KxKCl1-x system new results on complete wetting at solid-liquid coexistence as well as in the homogenous liquid phase (prewetting) are presented. The spectra show the typical F center absorption which indicates that the film is a salt-rich phase. The thickness strongly increases approaching the monotectic from 30 to 440 nm, which is in agreement with the tetra point wetting scenario. For this interpretation a quantitative description of the excess Gibbs energy has been developed. For the Ga1 xBix system the results on complete wetting, surface freezing and oscillatory interfacial instabilities are presented. The high-precision spectra have been recorded approaching the liquid-liquid miscibility. These spectra have been modeled using a Ga-Bi effective medium approximation for the substrate covered by a film of liquid Bi. The measurements give evidence of tetra point wetting in the Ga-Bi system. First ellipsometric study of the surface freezing in Ga-Bi has been performed. Within the miscibility gap a very interesting effect of surface and bulk oscillatory instability was observed. The details of this process at present are not well understood, but a qualitative description is given.


Periodical
Aggregate.
Authors: ---
ISSN: 26924560 Year: 2020 Publisher: [Hoboken, NJ] : John Wiley & Sons,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Percolation Theory Using Python
Author:
ISBN: 9783031599002 Year: 2024 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This course-based open access textbook delves into percolation theory, examining the physical properties of random media—materials characterized by varying sizes of holes and pores. The focus is on both the mathematical foundations and the computational and statistical methods used in this field. Designed as a practical introduction, the book places particular emphasis on providing a comprehensive set of computational tools necessary for studying percolation theory. Readers will learn how to generate, analyze, and comprehend data and models, with detailed theoretical discussions complemented by accessible computer codes. The book's structure ensures a complete exploration of worked examples, encompassing theory, modeling, implementation, analysis, and the resulting connections between theory and analysis. Beginning with a simplified model system—a model porous medium—whose mathematical theory is well-established, the book subsequently applies the same framework to realistic random systems. Key topics covered include one- and infinite-dimensional percolation, clusters, scaling theory, diffusion in disordered media, and dynamic processes. Aimed at graduate students and researchers, this textbook serves as a foundational resource for understanding essential concepts in modern statistical physics, such as disorder, scaling, and fractal geometry.


Book
Properties of Transition Metals and Their Compounds at Extreme Conditions
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The characterization of the physical and chemical properties of transition metals and their compounds under extreme conditions of pressure and temperature has always attracted the interest of a wide scientific community. Their properties have numerous implications in fields ranging from solid-state physics, chemistry, and materials science to Earth and planetary science. The present Special Issue represents a good example of such a broad interest and shows some of the latest advancements in the investigation of transition metals under extreme conditions of pressure and temperature.


Book
The Fuzziness in Molecular, Supramolecular, and Systems Chemistry
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fuzzy Logic is a good model for the human ability to compute words. It is based on the theory of fuzzy set. A fuzzy set is different from a classical set because it breaks the Law of the Excluded Middle. In fact, an item may belong to a fuzzy set and its complement at the same time and with the same or different degree of membership. The degree of membership of an item in a fuzzy set can be any real number included between 0 and 1. This property enables us to deal with all those statements of which truths are a matter of degree. Fuzzy logic plays a relevant role in the field of Artificial Intelligence because it enables decision-making in complex situations, where there are many intertwined variables involved. Traditionally, fuzzy logic is implemented through software on a computer or, even better, through analog electronic circuits. Recently, the idea of using molecules and chemical reactions to process fuzzy logic has been promoted. In fact, the molecular word is fuzzy in its essence. The overlapping of quantum states, on the one hand, and the conformational heterogeneity of large molecules, on the other, enable context-specific functions to emerge in response to changing environmental conditions. Moreover, analog input–output relationships, involving not only electrical but also other physical and chemical variables can be exploited to build fuzzy logic systems. The development of “fuzzy chemical systems” is tracing a new path in the field of artificial intelligence. This new path shows that artificially intelligent systems can be implemented not only through software and electronic circuits but also through solutions of properly chosen chemical compounds. The design of chemical artificial intelligent systems and chemical robots promises to have a significant impact on science, medicine, economy, security, and wellbeing. Therefore, it is my great pleasure to announce a Special Issue of Molecules entitled “The Fuzziness in Molecular, Supramolecular, and Systems Chemistry.” All researchers who experience the Fuzziness of the molecular world or use Fuzzy logic to understand Chemical Complex Systems will be interested in this book.


Book
The cortex and the critical point : understanding the power of emergence
Author:
ISBN: 0262370344 0262544032 Year: 2022 Publisher: Cambridge, Massachusetts : The MIT Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"A survey of the criticality hypothesis which imports theory from physics to understand the brain and could be a grand unifying theory of the brain at a time when neuroscience is dominated by data"--


Book
Properties and Dynamics of Neutron Stars and Proto-Neutron Stars
Authors: ---
ISBN: 3036554009 3036553991 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Following new developments in the measurement of gravitational waves from neutron–star mergers and the modification or construction of particle colliders to reach larger densities, we are entering a new era, during which we can begin to understand dense and hot matter for the first time. This, together with future supernova explosion data, will provide us with the opportunity to have truly multimessenger data on hot and dense matter, which is, to some extent, similar to the matter present in the core of proto-neutron stars. This Special Issue focuses on the theory necessary to understand present and future data. It includes state-of-the-art theoretical models that describe dense and hot matter and dynamical stellar simulations that make use of them, with the ultimate goal of determining which degrees of freedom are relevant under these conditions and how they affect the matter equation of state and stellar evolution.


Book
Intermittency in Transitional Shear Flows
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains original peer-reviewed articles written by some of the most prominent international physicists active in the field of hydrodynamics. The topic is entirely devoted to the study of the transitional regimes of incompressible viscous flow found at the onset of turbulent flows. Nine articles written for this 2020 Special Issue of the journal Entropy (MDPI) have been gathered at the crossroads of fluid mechanics, statistical physics, complexity theory, and applied mathematics. They include experimental, analytic, and computational material of an academic level that has not been published anywhere else.


Book
Synthesis and Applications of New Spin Crossover Compounds
Author:
ISBN: 3039213628 303921361X Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The crystal chemistry of spin crossover (SCO) behavior in coordination compounds can potentially be in association with smart materials—promising materials for applications as components of memory devices, displays, sensors and mechanical devices and, especially, actuators, such as artificial muscles. This Special Issue is devoted to various aspects of SCO and related research, comprising 18 interesting original papers on valuable and important SCO topics. Significant and fundamental scientific attention has been focused on the SCO phenomena in a wide research range of fields of fundamental chemical and physical and related sciences, containing the interdisciplinary regions of chemical and physical sciences related to the SCO phenomena. Coordination materials with bistable systems between the LS and the HS states are usually triggered by external stimuli, such as temperature, light, pressure, guest molecule inclusion, soft X-ray, and nuclear decay. Since the first Hofmann-like spin crossover (SCO) behavior in {Fe(py)2[Ni(CN)4]}n (py = pyridine) was demonstrated, this crystal chemistry motif has been frequently used to design Fe(II) SCO materials to enable determination of the correlations between structural features and magnetic properties.

Keywords

n/a --- hexadentate ligand --- X-ray diffraction --- structural disorder --- lattice energy --- 2-bis(4-pyridyl)ethane --- thermal hysteresis --- optical conductivity spectrum --- spin-state crossover --- solvate --- single crystal --- spin-crossover transition --- spin-crossover --- cobalt oxide --- amorphous --- metal dithiolene complexes --- qsal ligand --- impurity effect --- 3-triazole --- intermolecular interactions --- spin crossover --- hydrogen bonding --- 1 --- 2 --- optical microscopy --- supramolecular coordination polymer --- paramagnetic ligand --- magnetic susceptibility --- high spin --- [Fe(III)(3-OMesal2-trien)]+ --- aminoxyl --- cobalt(II) ion --- mosaicity --- Fe(III) coordination complexes --- nitroxides --- C–H···? interactions --- Fe(II) --- dithiooxalato ligand --- dinuclear triple helicate --- coordination polymers --- magnetization --- spiral structure --- magnetostructural correlations --- charge-transfer phase transition --- structure phase transition --- magnetic properties --- spin polaron --- substitution of 3d transition metal ion --- iron(II) complexes --- X-ray absorption spectroscopy --- coordination complexes --- crystal engineering --- fatigability --- soft X-ray induced excited spin state trapping --- spin transition --- dipyridyl-N-alkylamine ligands --- coordination polymer --- iron (II) --- iron mixed-valence complex --- chiral propeller structure --- spin cross-over (SCO) --- EPR spectroscopy --- Cu(II) complexes --- solvent effects --- ferromagnetism --- SQUID --- LIESST effect --- low spin (LS) --- 57Fe Mössbauer spectroscopy --- dielectric response --- iron(II) --- hetero metal complex --- atropisomerism --- switch --- Schiff base --- counter-anion --- DFT calculation --- Fe(III) complex --- Fe(II) complex --- high spin (HS) --- reaction diffusion --- thermochromism --- supramolecular isomerism --- phase transition --- magnetic transition --- mononuclear --- [Au(dmit)2]? --- UV-Vis spectroscopy --- phase transitions --- ?-? interactions --- [Au(dddt)2]? --- crystal structure --- linear pentadentate ligand --- ion-pair crystals --- C-H···? interactions --- 57Fe Mössbauer spectroscopy


Book
Modelling the Deformation, Recrystallization and Microstructure-Related Properties in Metals
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the special issue related to Modelling the Deformation, Recrystallization and Microstructure-Related Properties in Metals, we presented a wide spectrum of articles dealing with modelling of microstructural aspects involved in deformation and recrystallization as well as simulation of microstructure-based and texture-based properties in various metals. The latest advances in the theoretical interpretation of mesoscopic transformations based on experimental observations were partially discussed in the current special issue. The studies dealing with the modelling of structure-property relationships are likewise analyzed in the present collection of manuscripts. The contributions in the current collection evidently demonstrate that the properties of metallic materials are microstructure dependent and therefore the thermomechanical processing (TMP) of the polycrystalline aggregates should be strictly controlled to guarantee the desired bunch of qualities. Given this, the assessment of microstructure evolution in metallic systems is of extraordinary importance. Since the trial-error approach is a time-consuming and quite expensive methodology, the materials research community tends to employ a wide spectrum of computational approaches to simulate each chain of TMP and tune the processing variables to ensure the necessary microstructural state which will provide desired performance in the final product. Although many hidden facets of various technological processes and related microstructural changes were revealed in the submitted works by employing advanced computational approaches, nevertheless, the contributions collected in this issue clearly show that further efforts are required in the field of modelling to understand the complexity of material’s world. The final goal of modelling efforts might be a development of a comprehensive model, which will be capable of describing many aspects of microstructure evolution during thermomechanical processing.

Listing 1 - 10 of 30 << page
of 3
>>
Sort by