Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The demand for aluminum alloys is increasing because of their lightness, high specific strength and other attractive properties, which can exploited in improved products for a greener environment. This book gives a correlation between the processing, microstructure and properties of several aluminium alloys. Some of them are well established and used in an enormous number of applications, while others are still under development. The processing spans from casting, rapid solidification, additive manufacturing, forming, heat-treatment and welding, which can produce interesting microstructures and a useful combination of properties.
Al alloy --- laser induced arc hybrid welding --- heat treatment --- microstructure --- wrought aluminium alloy --- homogenization annealing --- thermodynamic equilibrium --- intermetallic phases --- differential scanning calorimetry (DSC) --- characterization methods --- scalability --- mechanical properties --- aluminium alloys --- aluminium --- ageing --- quasicrystal --- transmission electron microscopy --- aluminium alloy --- SLM --- auxetic structures --- numerical analysis --- fatigue --- Al alloy 7075-T6 --- ultrasonic fatigue --- artificial pits --- pre-corrosion --- crack initiation --- 7xxx aluminum series --- early precipitation stages --- corrosion --- Al3(Sc,Zr) particles --- annihilation of positrons --- activation energy --- material flow --- asymmetric weld --- tensile strength --- VPPA --- aluminum alloy AA5083 --- rapid solidification --- melt spinning --- high-strength aluminum --- extrusion --- bimodal microstructure --- precipitations
Choose an application
This Special Issue reprint book features a broad scope of contributions that highlight current accomplishments and provide readers with some perspective on the direction of research on magnesium alloys in the near future with respect to global challenges. The papers included in the book report on state-of-the-art methods and research trends regarding the microstructure, properties and industrial application of magnesium alloys for use in lightweight structures across several industries.
magnesium alloys --- interface reaction --- diffusion --- intermetallic phases --- cyclic expansion extrusion with asymmetrical extrusion cavity --- AZ31B alloy --- microstructure --- texture --- mechanical properties --- magnesium wire --- extrusion --- characterization --- wrapping test --- AZ-series --- EBSD --- magnesium --- deformation twinning --- damage initiation --- rolling --- strength --- segregation --- precipitate --- twinning --- modeling --- void --- rigid inclusion --- magnesium-rare earth alloy --- recrystallization --- selective grain growth --- Mg-RE alloys --- in situ diffraction --- crystal plasticity --- magnesium single crystal --- sheets --- formability --- non-flammability --- indirect extrusion --- magnesium alloy --- fatigue --- equal-channel angular pressing --- grain refinement --- S–N curve --- stent --- n/a --- S-N curve
Choose an application
In recent years, the requirements for technical components have steadily been increasing. This development is intensified by the desire for products with a lower weight, smaller size, and extended functionality, but also with a higher resistance against specific stresses. Mono-material components, which are produced by established processes, feature limited properties according to their respective material characteristics. Thus, a significant increase in production quality and efficiency can only be reached by combining different materials in a hybrid metal component. In this way, components with tailored properties can be manufactured that meet the locally varying requirements. Through the local use of different materials within a component, for example, the weight or the use of expensive alloying elements can be reduced. The aim of this Special Issue is to cover the recent progress and new developments regarding all aspects of hybrid bulk metal components. This includes fundamental questions regarding the joining, forming, finishing, simulation, and testing of hybrid metal parts.
tailored forming --- bulk metal forming --- geometry measurement --- wrought-hot objects --- turning --- process monitoring --- feeling machine --- benchmark --- lateral angular co-extrusion --- mechanical behavior --- hybrid metal components --- ultrasound --- laser beam welding --- excitation methods --- melt pool dynamics --- nickel base alloy 2.4856 --- membrane mode enhanced cohesive zone elements --- damage --- joining zone --- cross-wedge rolling --- welding --- PTA --- LMD-W --- forming --- rolling --- coating --- hybrid bearing --- residual stresses --- X-ray diffraction --- rolling contact fatigue --- bearing fatigue life --- AISI 52100 --- plasma transferred arc welding --- residual stress --- scanning acoustic microscopy --- hybrid components --- bevel gears --- hot forging --- process-integrated heat treatment --- air-water spray cooling --- self-tempering --- aluminum-steel compound --- intermetallic phases --- co-extrusion --- nanoindentation --- multi-material --- IZEO --- topology optimization --- computer-aided engineering environment --- GPDA --- manufacturing restrictions --- composites --- HSHPT --- nano multilayers --- Ni-Ti --- SPD --- friction welding --- surface geometry modification
Choose an application
This Special Issue “Characterization of Nanomaterials” collects nine selected papers presented at the 6th Dresden Nanoanalysis Symposium, held at Fraunhofer Institute for Ceramic Technologies and Systems in Dresden, Germany, on 31 August 2018. Following the specific motto of this annual symposium “Materials challenges—Micro- and nanoscale characterization”, it covered various topics of nanoscale materials characterization along the whole value and innovation chain, from fundamental research up to industrial applications. The scope of this Special Issue is to provide an overview of the current status, recent developments and research activities in the field of nanoscale materials characterization, with a particular emphasis on future scenarios. Primarily, analytical techniques for the characterization of thin films and nanostructures are discussed, including modeling and simulation. We anticipate that this Special Issue will be accessible to a wide audience, as it explores not only methodical aspects of nanoscale materials characterization, but also materials synthesis, fabrication of devices and applications.
physical vapor deposition --- magnetron sputtering --- AlN/Al coating --- silicon substrate --- residual stresses --- wafer curvature method --- nanoscale residual stress profiling --- indentation failure modes --- nanoindentation adhesion --- intermetallic phases --- growth kinetics --- Al–Ni system --- zinc oxide --- nanoparticles --- paper transistors --- printed electronics --- electrolyte-gated transistors --- microwave synthesis --- oxide dissociation --- doping --- rare earth ions --- upconversion --- liquid alloys --- 2D materials --- thin films --- Ga–Sn–Zn alloys --- gallium alloys --- nanoanalysis --- lithium-ion --- nickel–manganese–cobalt oxide (NMC) --- leaching --- recycling --- recover --- degradation --- SEM-EDX --- Raman spectroscopy --- resistive switching memories --- multi-level cell --- copper oxide --- grain boundaries --- aluminum oxide --- p-type TFT --- p-type oxide semiconductors --- SnO electrical properties --- oxide structure analysis --- ToF-SIMS 3D imaging --- compositional depth profiling --- high aspect ratio (HAR) structures --- silicon doped hafnium oxide (HSO) ALD deposition --- lateral high aspect ratio (LHAR) --- ToF-SIMS analysis --- n/a --- Al-Ni system --- Ga-Sn-Zn alloys --- nickel-manganese-cobalt oxide (NMC)
Listing 1 - 4 of 4 |
Sort by
|