Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

ULB (2)

ULiège (2)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2020 (1)

2019 (1)

Listing 1 - 2 of 2
Sort by

Book
Dual Specificity Phosphatases: From Molecular Mechanisms to Biological Function
Authors: ---
ISBN: 3039216899 3039216880 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Dual specificity phosphatases (DUSPs) constitute a heterogeneous group of protein tyrosine phosphatases with the ability to dephosphorylate Ser/Thr and Tyr residues from proteins, as well as from other non-proteinaceous substrates including signaling lipids. DUSPs include, among others, MAP kinase (MAPK) phosphatases (MKPs) and small-size atypical DUSPs. MKPs are enzymes specialized in regulating the activity and subcellular location of MAPKs, whereas the function of small-size atypical DUSPs seems to be more diverse. DUSPs have emerged as key players in the regulation of cell growth, differentiation, stress response, and apoptosis. DUSPs regulate essential physiological processes, including immunity, neurobiology and metabolic homeostasis, and have been implicated in tumorigenesis, pathological inflammation and metabolic disorders. Accordingly, alterations in the expression or function of MKPs and small-size atypical DUSPs have consequences essential to human disease, making these enzymes potential biological markers and therapeutic targets. This Special Issue covers recent advances in the molecular mechanisms and biological functions of MKPs and small-size atypical DUSPs, and their relevance in human disease.


Book
Plant Protein and Proteome Altlas--Integrated Omics Analyses of Plants under Abiotic Stresses
Authors: --- --- --- --- --- et al.
ISBN: 3039219618 303921960X Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Integrative omics of plants in response to stress conditions play more crucial roles in the post-genomic era. High-quality genomic data provide more deeper understanding of how plants to survive under environmental stresses. This book is focused on concluding the recent progress in the Protein and Proteome Atlas in plants under different stresses. It covers various aspects of plant protein ranging from agricultural proteomics, structure and function of proteins, and approaches for protein identification and quantification.

Keywords

phosphoproteomics --- GLU1 --- somatic embryogenesis --- CHA-SQ-1 --- nitrogen fertilizer --- chilling stress --- differentially abundant proteins --- ATP synthase --- photosynthetic parameters --- photosynthesis --- constitutive splicing --- phosphorylation --- Jatropha curcas --- plants under stress --- postharvest freshness --- Alternanthera philoxeroides --- rubber latex --- Millettia pinnata --- molecular and biochemical basis --- filling kernel --- drought stress --- comparative proteomic analysis --- domain --- micro-exons --- phylogeny --- phos-tagTM --- E. angustifolia --- root cell elongation --- ABA --- pollen abortion --- lncRNA --- transcriptome --- radish --- redox homeostasis --- Nelumbo nucifera --- sugar beet --- shotgun proteomics --- proteomes --- high-temperature stress --- post-genomics era --- model plant --- salt tolerance --- miRNA --- wheat --- physiological response --- stress --- visual proteome map --- transcriptional dynamics --- leaf --- maize --- Dunaliella salina --- phosphatidylinositol --- S-adenosylmethionine decarboxylase --- Gossypium hirsutum --- flavonoid biosynthesis --- phosphatase --- wood vinegar --- heat shock proteins --- silicate limitation --- purine metabolism --- natural rubber biosynthesis --- ancient genes --- cotton --- rubber grass --- abiotic stress --- heat stress --- maturation --- low-temperature stress --- molecular basis --- transcriptome sequencing --- ROS scavenging --- widely targeted metabolomics --- transdifferentiation --- seed development --- alternative splicing --- cultivars --- inositol --- salt stress --- chlorophyll fluorescence parameters --- proteome --- carbon fixation --- AGPase --- transcript-metabolite network --- molecular mechanisms --- Triticum aestivum L. --- Zea mays L. --- ROS --- label-free quantification --- woody oilseed plants --- heat-sensitive spinach variety --- MIPS --- quantitative proteomics --- regulated mechanism --- two-dimensional gel electrophoresis --- potassium --- glutathione --- Salinity stress --- integrated omics --- diatom --- ATP synthase CF1 alpha subunit (chloroplast) --- root --- proteome atlas --- brittle-2 --- mass spectrometry --- genomics --- Taraxacum kok-saghyz --- cytomorphology --- proteomics --- arbuscular mycorrhizal fungi --- signaling pathway --- proteomic --- loss-of-function mutant --- rice --- seedling --- wucai --- leaf sheath --- root and shoot --- antioxidant enzyme --- exon-intron structure diversity --- isobaric tags for relative and absolute quantitation --- regulation and metabolism --- concerted network --- drought --- heat response --- VIGS --- iTRAQ --- nitrogen use efficiency (NUE) --- stem

Listing 1 - 2 of 2
Sort by