Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

VIVES (3)

Vlaams Parlement (3)

UGent (2)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2020 (1)

2019 (2)

Listing 1 - 3 of 3
Sort by

Book
Symmetry with Operator Theory and Equations
Author:
ISBN: 3039216678 303921666X Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

A plethora of problems from diverse disciplines such as Mathematics, Mathematical: Biology, Chemistry, Economics, Physics, Scientific Computing and also Engineering can be formulated as an equation defined in abstract spaces using Mathematical Modelling. The solutions of these equations can be found in closed form only in special case. That is why researchers and practitioners utilize iterative procedures from which a sequence is being generated approximating the solution under some conditions on the initial data. This type of research is considered most interesting and challenging. This is our motivation for the introduction of this special issue on Iterative Procedures.


Book
Applied Functional Analysis and Its Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Applied functional analysis has an extensive history. In the last century, this field has often been used in physical sciences, such as wave and heat phenomena. In recent decades, with the development of nonlinear functional analysis, this field has been used to model a variety of engineering, medical, and computer sciences. Two of the most significant issues in this area are modeling and optimization. Thus, we consider some recently published works on fixed point, variational inequalities, and optimization problems. These works could lead readers to obtain new novelties and familiarize them with some applications of this area.

Keywords

vector variational-like inequalities --- vector optimization problems --- limiting (p,r)-α-(η,θ)-invexity --- Lipschitz continuity --- Fan-KKM theorem --- set-valued optimization problems --- higher-order weak adjacent epiderivatives --- higher-order mond-weir type dual --- benson proper efficiency --- fractional calculus --- ψ-fractional integrals --- fractional differential equations --- contraction --- hybrid contractions --- volterra fractional integral equations --- fixed point --- inertial-like subgradient-like extragradient method with line-search process --- pseudomonotone variational inequality problem --- asymptotically nonexpansive mapping --- strictly pseudocontractive mapping --- sequentially weak continuity --- method with line-search process --- pseudomonotone variational inequality --- strictly pseudocontractive mappings --- common fixed point --- hyperspace --- informal open sets --- informal norms --- null set --- open balls --- modified implicit iterative methods with perturbed mapping --- pseudocontractive mapping --- strongly pseudocontractive mapping --- nonexpansive mapping --- weakly continuous duality mapping --- set optimization --- set relations --- nonlinear scalarizing functional --- algebraic interior --- vector closure --- conjugate gradient method --- steepest descent method --- hybrid projection --- shrinking projection --- inertial Mann --- strongly convergence --- strict pseudo-contraction --- variational inequality problem --- inclusion problem --- signal processing


Book
Iterative Methods for Solving Nonlinear Equations and Systems
Authors: --- ---
ISBN: 3039219413 3039219405 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.

Keywords

Lipschitz condition --- heston model --- rectangular matrices --- computational efficiency --- Hull–White --- order of convergence --- signal and image processing --- dynamics --- divided difference operator --- engineering applications --- smooth and nonsmooth operators --- Newton-HSS method --- higher order method --- Moore–Penrose --- asymptotic error constant --- multiple roots --- higher order --- efficiency index --- multiple-root finder --- computational efficiency index --- Potra–Pták method --- nonlinear equations --- system of nonlinear equations --- purely imaginary extraneous fixed point --- attractor basin --- point projection --- fixed point theorem --- convex constraints --- weight function --- radius of convergence --- Frédholm integral equation --- semi-local convergence --- nonlinear HSS-like method --- convexity --- accretive operators --- Newton-type methods --- multipoint iterations --- banach space --- Kantorovich hypothesis --- variational inequality problem --- Newton method --- semilocal convergence --- least square problem --- Fréchet derivative --- Newton’s method --- iterative process --- Newton-like method --- Banach space --- sixteenth-order optimal convergence --- nonlinear systems --- Chebyshev–Halley-type --- Jarratt method --- iteration scheme --- Newton’s iterative method --- basins of attraction --- drazin inverse --- option pricing --- higher order of convergence --- non-linear equation --- numerical experiment --- signal processing --- optimal methods --- rate of convergence --- n-dimensional Euclidean space --- non-differentiable operator --- projection method --- Newton’s second order method --- intersection --- planar algebraic curve --- Hilbert space --- conjugate gradient method --- sixteenth order convergence method --- Padé approximation --- optimal iterative methods --- error bound --- high order --- Fredholm integral equation --- global convergence --- iterative method --- integral equation --- ?-continuity condition --- systems of nonlinear equations --- generalized inverse --- local convergence --- iterative methods --- multi-valued quasi-nonexpasive mappings --- R-order --- finite difference (FD) --- nonlinear operator equation --- basin of attraction --- PDE --- King’s family --- Steffensen’s method --- nonlinear monotone equations --- Picard-HSS method --- nonlinear models --- the improved curvature circle algorithm --- split variational inclusion problem --- computational order of convergence --- with memory --- multipoint iterative methods --- Kung–Traub conjecture --- multiple zeros --- fourth order iterative methods --- parametric curve --- optimal order --- nonlinear equation

Listing 1 - 3 of 3
Sort by