Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

Vlaams Parlement (2)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2021 (1)

2020 (1)

Listing 1 - 2 of 2
Sort by

Book
Physics of Porous Media
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

The physics of porous media is, when taking a broad view, the physics of multinary mixtures of immiscible solid and fluid constituents. Its relevance to society echoes in numerous engineering disciplines such as chemical engineering, soil mechanics, petroleum engineering, groundwater engineering, geothermics, fuel cell technology… It is also at the core of many scientific disciplines ranging from hydrogeology to pulmonology. Perhaps one may affix a starting point for the study of porous media as the year 1794 when Reinhard Woltman introduced the concept of volume fractions when trying to understand mud. In 1856, Henry Darcy published his findings on the flow of water through sand packed columns and the first constitutive relation was born. Wyckoff and Botset proposed in 1936 a generalization of the Darcy approach to deal with several immiscible fluids flowing simultaneously in a rigid matrix. This effective medium theory assigns to each fluid a relative permeability, i.e. a constitutive law for each fluid species. It remains to this day the standard framework for handling the motion of two or more immiscible fluids in a rigid porous matrix even though there have been many attempts at moving beyond it. When the solid constituent is not rigid, forces in the fluids and the solid phase influence each other. von Terzaghi realized the importance of capillary forces in such systems in the thirties. An effective medium theory of poroelasticity was subsequently developend by Biot in the mid fifties. Biot theory remains to date state of the art for handling matrix-fluid interactions when the deformations of the solid phase remain small. For large deformations, e.g. when the solid phase is unconsolidated, no effective medium theory exists.


Book
Micro/Nano-Chip Electrokinetics, Volume III
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Micro/nanofluidics-based lab-on-a-chip devices have found extensive applications in the analysis of chemical and biological samples over the past two decades. Electrokinetics is the method of choice in these micro/nano-chips for transporting, manipulating, and sensing various analyte species (e.g., ions, molecules, fluids, and particles). This book aims to highlight the recent developments in the field of micro/nano-chip electrokinetics, ranging from the fundamentals of electrokinetics to the applications of electrokinetics to both chemo- and bio-sample handling.

Keywords

electrokinetic micromixer --- induced-charge electroosmosis --- field-induced Debye screening --- AC field-effect flow control --- electrochemical ion relaxation --- Electroosmosis --- Power-law fluid --- Non-Newtonian fluid --- Asymmetric zeta potential --- organ-on-a-chip --- biosensors --- biomedical --- microfluidics --- in vivo models --- applications --- Microfilter --- Dielectrophoresis --- Particle separation, micropillar --- multi-layer structure --- electroosmotic flow (EOF) pump --- parallel fluid channels --- liquid metal electrodes --- microfluidic particle concentrator --- continuous and switchable particle flow-focusing --- composite electrode arrangement --- field-effect flow control --- multifrequency induced-charge electroosmosis --- simultaneous pumping and convective mixing --- dual-Fourier-mode AC forcing --- traveling-wave/standing-wave AC electroosmosis --- bacteriophage --- dielectrophoresis --- electric field --- electrophoresis --- electrokinetics --- virus --- time-periodic electroosmotic flow --- heterogeneous surface charge --- cylindrical microchannel --- stream function --- micro-mixing --- cross-membrane voltage --- ion concentration polarization --- desalination effect --- pump effect --- eddy current --- electroosmotic flow --- viscoelastic fluid --- nanofluidics --- ionic conductance --- electrical double layer --- droplet --- electrohydrodynamics --- phase field method --- non-uniform electric field --- Linear Phan-Thien–Tanner (LPTT) --- pH --- tunable focus --- liquid lens --- charge injection --- characterization --- carbon electrodes --- three-dimensional (3D) --- diagnostics --- Candidiasis --- n/a --- Linear Phan-Thien-Tanner (LPTT)

Listing 1 - 2 of 2
Sort by