Listing 1 - 7 of 7 |
Sort by
|
Choose an application
This book contains experiences and results of computer simulations in the field of research on glued laminated timber. Literature and references to the corresponding methodical approach are given to facilitate the access to the elementary basics. It also contains constructive explanations and critical annotations on modelling glued laminated timber for bending, tension and compression tests. Finally, the relevance of the simulation results for practical issues is discussed.
Brettschichtholz --- Karlsruher Rechenmodell --- tensile strength --- Zugfestigkeit --- DruckfestigkeitKarlsruhe Rechenmodell --- Computersimulation --- Biegefestigkeit --- computer simulation --- compression strength --- bending strength --- glued laminated timber
Choose an application
Wood composites have shown very good performance, and substantial service lives when correctly specified for the exposure risks present. Selection of an appropriate product for the job should be accompanied by decisions about the appropriate protection, whether this is by design, by preservative treatment or by wood modification techniques. This Special Issue, Advances in Wood Composites presents recent progress in enhancing and refining the performance and properties of wood composites by chemical and thermal modification and the application of smart nanomaterials, which have made them a particular area of interest for researchers. In addition, it reviews some important aspects in the field of wood composites, with particular focus on their materials, applications, and engineering and scientific advances, including solutions inspired biomimetrically by the structure of wood and wood composites. This Special Issue, with a collection of 13 original contributions, provides selected examples of recent Advances in Wood Composites
shear strength --- n/a --- buckling --- thermal property --- acetic anhydride --- WPC --- silicon carbide --- coating amount --- composite --- polymer-triticale boards --- wood --- activation volume --- oriented strand lumber (OSL) --- bending strength --- nanowollastonite --- VOCs --- wood-inorganic composites --- thermal modification --- wood plastic composite --- crystallinity --- sol-gel process --- wood adhesive --- straw --- mechanical properties --- bamboo --- plastic --- carbothermal reduction --- formaldehyde emissions --- cellulose --- graphene nano-platelets --- creep behavior --- surface properties --- dimensional stability --- nanocompounds --- UF resin --- tunnel-structured --- ceramic --- color --- water absorption --- high-density polyethylene film --- mechanical property --- aquacultural --- HDPE --- biorefinery lignin --- methyl methacrylate --- structural analysis --- sol–gel process --- polyurethane-acrylate --- mechanical and physical properties --- water-based UV curing coating --- oak (Quercus alba L.) --- dynamic thermodynamic --- stepped isostress method --- thermoplastic polymers --- sustainable adhesives --- finite element analysis --- rapid formaldehyde release --- adhesive penetration --- modulus of elasticity in bending --- Southwell’s method --- hydrophobicity --- Abaqus --- sepiolite --- chemical structure --- alder plywood --- wood panels --- particleboard properties --- chemical modification --- thickness swelling --- Southwell's method
Choose an application
Wood composites have shown very good performance and substantial service lives when correctly specified for the exposure risks present. The selection of an appropriate product for the job should be accompanied by decisions about the appropriate protection, whether this is by design, by preservative treatment, or by wood modification techniques. This Special Issue, “Advances in Wood Composites II”, presents recent progress in enhancing and refining the performance and properties of wood composites by chemical and thermal modification and the application of smart nanomaterials. Such enhancements and refinements have made wood composites a particular area of interest for researchers. In addition, this Special Issue reviews some important aspects in the field of wood composites, with particular focus on their materials, applications, and engineering and scientific advances, including solutions inspired biomimetically by the structure of wood and wood composites. This Special Issue, as a collection of 14 original contributions, provides selected examples of recent advances in wood composites.
EPDM rubber --- wood sawdust --- electron beam irradiation --- dibenzoyl peroxide --- cross-liking --- physico-chemical characteristics --- feather protein --- wood preservatives --- nano-carrier --- treatability --- decay resistance --- short-rotation --- aspen --- willow --- injection molding --- biocomposite --- tensile strength --- bending strength --- microstructure behavior --- viscoelasticity --- WPC --- HDPE --- composite --- wood --- creep --- thermoplastic --- flexure --- power law --- modeling --- fire retardants --- fire retardancy --- graphene --- nano-materials --- wollastonite --- black locust wood --- ammonia treated wood --- colour change --- dynamic mechanical analysis --- birch plywood --- veneer-drying temperature --- formaldehyde emission --- modulus of elasticity --- bonding strength --- thickness swelling --- water absorption --- transparent wood --- orthogonal test --- partial delignification --- light transmittance --- morphological structure --- sorption behavior --- sorption fitting model --- compositional analysis --- hydroxyl accessibility --- engineering materials --- composite panels --- chicken feather --- cell-wall polymers --- thermal conductivity coefficient --- natural materials --- spruce and larch bark --- sound absorption coefficient --- impedance tube --- biomass --- up-cycling --- plywood --- densification --- core layer temperature --- bonding quality --- hot pressing --- veneer stack heating --- wood composites --- wood composite binders --- synthetic wood adhesives --- biosourced wood adhesives --- environment-friendly --- new approaches --- n/a
Choose an application
This Special Issue "Application of Wood Composites" addresses various aspects of these important wood materials’ use. Topics include the mechanical processing of wood composites, including their cutting, milling, or sanding, incorporating current analysis of wood dust or grain size measurements and the composition of particles; scientific views on the influence of various adhesives in the creation process of wood composites and the analysis of their behavior in contact with various wood elements under different conditions; the analysis of input raw materials forming wood composites, including various wood species, but also non-wood lignocellulosic raw materials; and, last but not least, the analysis of bark, which in recent years has become an important and promising raw material involved in the construction of wood composites. The study of the development of the sliding table saw also suitably complements this Special Issue.
bark --- bonding --- partial liquefaction --- MUF adhesives --- water vapor sorption --- thickness swelling --- wood-based panels --- chestnut --- decay --- defect --- density --- knot --- roughness --- surface --- texture --- quality --- veneer --- hazelnut --- walnut --- shells --- lignocellulosic composites --- UF --- PUR --- formaldehyde content --- oriented strand boards (OSBs) --- fast-growing species, modulus of rupture (MOR) --- modulus of elasticity (MOE) --- internal bond (IB) --- swelling (S) --- water absorption (A) --- biobased resins --- formaldehyde emission --- minerals --- wollastonite --- wood composite panels --- sliding table saw --- spindle --- critical rotational speed --- static stiffness --- dynamic properties --- noise --- sawing of wood composites --- wood composites --- recycled fibres --- bioadhesives --- magnesium lignosulfonate --- corner joints --- bending strength capacity --- birch wood --- chips --- granulometric composition of sawdust and chips --- air handling --- ecological filtration --- tropical wood dust --- granulometric sieve analysis --- morphology shape of particles --- temperature of ignition --- laser cutting --- wood --- cutting parameters --- wood dust --- sanding --- sandpaper --- particle-size distribution --- acetylation --- wood fiber --- strength --- stiffness --- internal bonding strength --- regression --- finite element analysis --- alien plants --- wood plastic composite --- flexural strength --- tensile strength --- swelling --- dimension stability --- scanning electron microscopy --- hardwoods --- extractives --- pH value --- wettability --- PVAc adhesive --- adhesion strength --- particleboard --- three-layer particleboard --- cup plant --- TOF-SIMS --- biomass --- bioresources --- softwood --- hardwood --- belt sander --- abrasion --- beech --- oak --- ash --- hornbeam --- alder --- pine --- spruce --- larch --- n/a
Choose an application
This book aims to summarize the latest achievements in the development and manufacturing of modern biomaterials used in modern medicine and dentistry, for example, in cases where, as a result of a traffic or sports accident, aging, resection of organs after oncological surgery, or dangerous inflammation, there is a need to replace lost organs, tissues, and parts of the human body. The essence of biomedical materials is their constant contact with living tissues, organisms, or microorganisms and, therefore, they should meet numerous requirements from various fields, including medicine, biology, chemistry, tissue engineering, and materials science. For this reason, biomaterials must be compatible with the organism, and biocompatibility issues must be addressed before using the product in a clinical setting. The production and synthesis of biomaterials require the use of various technologies and methods to obtain the appropriate material, which is then processed using advanced material processing technologies. Often, however, it is necessary to directly manufacture a specific product with individualized geometric features and properties tailored to the requirements of a particular patient. In such cases, additive manufacturing methods are increasingly used. In this sense, it can be considered that the Biomaterials 4.0 stage has been reached, and detailed information is included in the individual chapters of this book on the achievements in the development and manufacturing of modern biomaterials used in modern regenerative medicine, regenerative dentistry, and tissue engineering.
sol-gel phase transitions --- injectable scaffolds --- chitosan --- calcium β-glycerophosphate --- rheology --- bone tissue engineering --- diblock copolymers --- drug delivery systems --- nanoparticles --- nanoprecipitation --- self-assembly --- implant --- stainless steel --- nickel --- leaching --- nitrogen --- cytotoxicity --- nanodendrites --- nanostar --- fibroblast cells --- gelatin --- one-pot synthesis --- hollow mesoporous silica --- porous silica --- high drug loading capacity --- drug delivery system --- fretting --- fretting wear --- Ni-Cr-Mo --- dental alloys --- titaniumcarbonitride --- Ti(C, N) coating --- thin films --- zirconium carbide --- antimicrobial properties --- medical implants --- 316L stainless steel --- sintering --- surface nitriding --- nitrogen absorption --- response surface methodology --- sodium alginate --- hydrogel material --- regenerative medicine --- urethra --- hybrid materials --- hydroxyapatite --- FEA --- V-shaped tooth defects --- fillings --- glass-ionomer cement --- flowable composite --- stomatognathic system --- prosthetic restorations --- surgical guide --- dental prosthesis restoration manufacturing center --- CBCT tomography --- dental implants --- implant-scaffolds --- hybrid multilayer biological-engineering composites biomaterials --- CAD/CAM methods --- additive manufacturing technologies --- selective laser sintering --- stereolithography --- Dentistry 4.0 --- Industry 4.0 --- robocasting --- bioactive glass --- scaffold --- sol–gel --- 45S5 Bioglass® --- biomaterials --- biomedical implants --- additive manufacturing --- dental prosthetic restorations --- Ti6Al4V dental alloy --- structural X-ray analysis --- energy-dispersive X-ray spectroscope --- metallography --- tensile and bending strength --- corrosion resistance --- tribological tests --- in-vitro tests --- industry 4.0 --- dentistry 4.0 --- SARS-CoV-2 pandemic --- SPEC strategy --- elimination clinical aerosol at the source --- dendrological matrix --- photopolymer materials --- additive digital light printing --- dentistry sustainable development --- dental prophylaxis --- dental interventionistic treatment --- caries --- periodontology --- toothlessness --- endodontics --- dental implantology --- dental prosthetics --- dentist safety --- dentist ethics --- Co–Cr dental alloys --- corrosion --- porcelain firing --- SLM --- MSM --- CST --- light-cured composites --- photopolymerization process --- microhardness --- optimization --- regression analysis --- health --- well-being --- long and healthy life policy --- medicine --- dentistry --- medical ethics --- COVID-19 pandemic --- bioengineering --- medical engineering --- dental engineering --- biomedical materials --- Bioengineering 4.0 --- engineers’ ethics --- filling materials --- sealants --- obturation --- gutta-percha --- Resilon --- procedural benchmarking --- comparative matrices --- virtual approach --- digital twin --- scanning electron microscopy --- n/a --- sol-gel --- Co-Cr dental alloys --- engineers' ethics --- Waddawalla / Well 40 (Great Sandy Desert WA SF51-08)
Choose an application
This book was proposed and organized as a means to present recent developments in the field of testing of materials and elements in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of testing of different materials and elements in civil engineering, from building materials to building structures. The current trend in the development of testing of materials and elements in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. Interesting results with significance for building practices were obtained.
Technology. --- rock bolt --- grouting quality --- dynamic response --- natural frequency --- finite element method --- monitoring --- historical masonry wall --- hygrothermal processes --- internal insulation --- testing of building materials --- test uncertainty --- validation of test methods --- sustainable test methods --- recycling --- foamed asphalt mixtures with cement (FAC) --- base layer --- reclaimed asphalt pavement (RAP) --- fatigue durability --- GFRP --- FRP reinforcement --- shear --- capacity --- reinforced concrete beams --- column --- stiffness --- FRCM --- PBO mesh --- PBO–FRCM --- carpentry joints --- scarf and splice joints --- stop-splayed scarf joints (‘bolt of lightning’) --- static behaviour --- experimental research --- concrete --- non-destructive testing --- ultrasounds --- ultrasonic tomography --- acoustic methods --- defects --- diagnostic --- detection --- convolutional neural networks --- transfer learning --- monitoring FBG --- power transmission tower --- civil engineering --- X-ray microtomography --- microstructure characteristics --- infiltration damage --- high-strength concrete --- steel fibres --- flexural tensile strength --- fracture energy --- numerical analysis --- concrete floors --- compressive strength --- strength distribution --- industrial floors --- ultrasound tests --- ventilated facades --- large-scale facade model --- fire safety --- fiber cement board --- large-slab ceramic tile --- plasterboards --- moisture content --- hydration processes --- mechanical properties --- ultrasound measurements --- ESD resin --- expansion joint --- quasi-plastic material --- energy absorption --- asphalt mix --- compaction index --- volumetric parameters --- stiffness modulus --- moisture resistance --- roughness --- texture --- close-range photogrammetry --- bond strength --- random field generation --- semivariograms --- hybrid truss bridge --- steel–concrete connection joint --- mechanical behavior --- failure mode --- strain --- static test --- static elastic modulus --- dynamic elastic modulus --- machine learning --- P-wave --- S-wave --- resonance frequency test --- nondestructive method --- Al–Ti laminate --- fracture --- acoustic emission diagnostic --- pattern recognition --- clustering AE signal --- storage systems --- tab connector --- flexural test --- capable design moment --- restrained ring test --- autogenous shrinkage cracking --- concrete cracking test --- concrete shrinkage cracking test --- restrined ring calibration --- cement–fiber boards --- acoustic emission method --- k-means algorithm --- wavelet analysis --- fiber composites --- ground penetrating radar (GPR) --- HMA dielectric constant --- road pavement thickness estimation --- early age concrete --- damage processes detection before loading --- strength of structures --- aggregate --- classification --- wire mesh --- roundness --- tilting angle --- opening size --- concrete centrifugation --- morphology --- image processing --- porosity --- cement --- waste paper sludge ash (WPSA) --- controlled low-strength material (CLSM) --- unconfined compressive strength --- bearing capacity --- backfill material --- P-wave velocity --- amplitude attenuation --- resistivity --- CT scan --- sandstone --- damage variable --- nuclear magnetic resonance --- spin-lattice relaxometry --- proton --- hydration kinetics --- superplasticizer --- ready-mixed concrete --- construction material --- quality assessment --- conformity criteria --- statistical-fuzzy method --- FRTP --- rivet --- connection --- polyethylene pipe --- mechanical properties of polyethylene --- resistance strain --- computer simulation --- residual shear stress --- particle crushing --- ring shear test --- particle flow code (PFC2D) --- frictional work --- fibre-reinforced concrete --- recycled steel fibres --- micro-computed tomography --- scanning electron microscopy --- tensile strength --- reinforced concrete --- diagnostic testing --- corrosion --- carbonation --- galvanostatic pulse method --- phase composition analysis --- X-ray analysis --- thermal analysis --- quasi-brittle cement composites --- low-module polypropylene fibres --- elastic range --- digital image correlation --- Arcan shear test --- wood --- orthotropic shear modulus --- elastic-plastic material --- shear wave velocity --- sand --- bender elements test --- grain-size characteristics --- complex modulus --- shrinkage analysis --- reclaimed asphalt --- mineral–cement emulsion mixtures --- cement dusty by-products (UCPPs) --- degradation of glass panels --- effective area ratio --- relative mass loss --- visible light transmittance --- windblown sand --- wood-plastic composites --- methods of testing resistance to fungi --- methods of assessment --- ground-penetrating radar (GPR) --- non-destructive techniques (NDT) --- corrosion of reinforcement --- slip resistance --- granite floor --- slip resistance value --- ramp test --- acceptance angle --- sliding friction coefficient --- comparability of test methods --- wall temperature --- fibre bragg grating sensors --- freeze-thaw cycles --- signal analysis --- short-time Fourier transform --- fast Fourier transform --- brine --- sodium chloride --- X-ray --- partition walls --- brick walls --- bending strength --- cracking --- post-tension --- cable --- girder --- destructive test --- non-destructive test --- structural health monitoring --- safety --- monitoring fibre Bragg grating --- mining areas --- strain/stress distribution --- geopolymer concrete --- fly-ash --- bottom-ash --- neural network --- sustainability --- industrial waste management --- flexural strength --- cladding --- AE acoustic emission --- micro-events --- sound spectrum --- traditional and quasi-brittle cement composites --- residual-state creep --- saturation front --- landslides --- erosional stability --- laboratory testing --- grout mixtures --- groundwater --- test apparatus --- testing --- building materials --- elements
Choose an application
This book was proposed and organized as a means to present recent developments in the field of testing of materials and elements in civil engineering. For this reason, the articles highlighted in this editorial relate to different aspects of testing of different materials and elements in civil engineering, from building materials to building structures. The current trend in the development of testing of materials and elements in civil engineering is mainly concerned with the detection of flaws and defects in concrete elements and structures, and acoustic methods predominate in this field. As in medicine, the trend is towards designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. Interesting results with significance for building practices were obtained.
Technology. --- rock bolt --- grouting quality --- dynamic response --- natural frequency --- finite element method --- monitoring --- historical masonry wall --- hygrothermal processes --- internal insulation --- testing of building materials --- test uncertainty --- validation of test methods --- sustainable test methods --- recycling --- foamed asphalt mixtures with cement (FAC) --- base layer --- reclaimed asphalt pavement (RAP) --- fatigue durability --- GFRP --- FRP reinforcement --- shear --- capacity --- reinforced concrete beams --- column --- stiffness --- FRCM --- PBO mesh --- PBO–FRCM --- carpentry joints --- scarf and splice joints --- stop-splayed scarf joints (‘bolt of lightning’) --- static behaviour --- experimental research --- concrete --- non-destructive testing --- ultrasounds --- ultrasonic tomography --- acoustic methods --- defects --- diagnostic --- detection --- convolutional neural networks --- transfer learning --- monitoring FBG --- power transmission tower --- civil engineering --- X-ray microtomography --- microstructure characteristics --- infiltration damage --- high-strength concrete --- steel fibres --- flexural tensile strength --- fracture energy --- numerical analysis --- concrete floors --- compressive strength --- strength distribution --- industrial floors --- ultrasound tests --- ventilated facades --- large-scale facade model --- fire safety --- fiber cement board --- large-slab ceramic tile --- plasterboards --- moisture content --- hydration processes --- mechanical properties --- ultrasound measurements --- ESD resin --- expansion joint --- quasi-plastic material --- energy absorption --- asphalt mix --- compaction index --- volumetric parameters --- stiffness modulus --- moisture resistance --- roughness --- texture --- close-range photogrammetry --- bond strength --- random field generation --- semivariograms --- hybrid truss bridge --- steel–concrete connection joint --- mechanical behavior --- failure mode --- strain --- static test --- static elastic modulus --- dynamic elastic modulus --- machine learning --- P-wave --- S-wave --- resonance frequency test --- nondestructive method --- Al–Ti laminate --- fracture --- acoustic emission diagnostic --- pattern recognition --- clustering AE signal --- storage systems --- tab connector --- flexural test --- capable design moment --- restrained ring test --- autogenous shrinkage cracking --- concrete cracking test --- concrete shrinkage cracking test --- restrined ring calibration --- cement–fiber boards --- acoustic emission method --- k-means algorithm --- wavelet analysis --- fiber composites --- ground penetrating radar (GPR) --- HMA dielectric constant --- road pavement thickness estimation --- early age concrete --- damage processes detection before loading --- strength of structures --- aggregate --- classification --- wire mesh --- roundness --- tilting angle --- opening size --- concrete centrifugation --- morphology --- image processing --- porosity --- cement --- waste paper sludge ash (WPSA) --- controlled low-strength material (CLSM) --- unconfined compressive strength --- bearing capacity --- backfill material --- P-wave velocity --- amplitude attenuation --- resistivity --- CT scan --- sandstone --- damage variable --- nuclear magnetic resonance --- spin-lattice relaxometry --- proton --- hydration kinetics --- superplasticizer --- ready-mixed concrete --- construction material --- quality assessment --- conformity criteria --- statistical-fuzzy method --- FRTP --- rivet --- connection --- polyethylene pipe --- mechanical properties of polyethylene --- resistance strain --- computer simulation --- residual shear stress --- particle crushing --- ring shear test --- particle flow code (PFC2D) --- frictional work --- fibre-reinforced concrete --- recycled steel fibres --- micro-computed tomography --- scanning electron microscopy --- tensile strength --- reinforced concrete --- diagnostic testing --- corrosion --- carbonation --- galvanostatic pulse method --- phase composition analysis --- X-ray analysis --- thermal analysis --- quasi-brittle cement composites --- low-module polypropylene fibres --- elastic range --- digital image correlation --- Arcan shear test --- wood --- orthotropic shear modulus --- elastic-plastic material --- shear wave velocity --- sand --- bender elements test --- grain-size characteristics --- complex modulus --- shrinkage analysis --- reclaimed asphalt --- mineral–cement emulsion mixtures --- cement dusty by-products (UCPPs) --- degradation of glass panels --- effective area ratio --- relative mass loss --- visible light transmittance --- windblown sand --- wood-plastic composites --- methods of testing resistance to fungi --- methods of assessment --- ground-penetrating radar (GPR) --- non-destructive techniques (NDT) --- corrosion of reinforcement --- slip resistance --- granite floor --- slip resistance value --- ramp test --- acceptance angle --- sliding friction coefficient --- comparability of test methods --- wall temperature --- fibre bragg grating sensors --- freeze-thaw cycles --- signal analysis --- short-time Fourier transform --- fast Fourier transform --- brine --- sodium chloride --- X-ray --- partition walls --- brick walls --- bending strength --- cracking --- post-tension --- cable --- girder --- destructive test --- non-destructive test --- structural health monitoring --- safety --- monitoring fibre Bragg grating --- mining areas --- strain/stress distribution --- geopolymer concrete --- fly-ash --- bottom-ash --- neural network --- sustainability --- industrial waste management --- flexural strength --- cladding --- AE acoustic emission --- micro-events --- sound spectrum --- traditional and quasi-brittle cement composites --- residual-state creep --- saturation front --- landslides --- erosional stability --- laboratory testing --- grout mixtures --- groundwater --- test apparatus --- testing --- building materials --- elements
Listing 1 - 7 of 7 |
Sort by
|