Listing 1 - 2 of 2 |
Sort by
|
Choose an application
An important, open research topic today is to understand the relevance that dark matter halo substructure may have for dark matter searches. In the standard cosmological model, halo substructure or subhalos are predicted to be largely abundant inside larger halos, for example, galaxies such as ours, and are thought to form first and later merge to form larger structures. Dwarf satellite galaxies—the most massive exponents of halo substructure in our own galaxy—are already known to be excellent targets for dark matter searches, and indeed, they are constantly scrutinized by current gamma-ray experiments in the search for dark matter signals. Lighter subhalos not massive enough to have a visible counterpart of stars and gas may be good targets as well, given their typical abundances and distances. In addition, the clumpy distribution of subhalos residing in larger halos may boost the dark matter signals considerably. In an era in which gamma-ray experiments possess, for the first time, the exciting potential to put to test the preferred dark matter particle theories, a profound knowledge of dark matter astrophysical targets and scenarios is mandatory should we aim for accurate predictions of dark matter-induced fluxes for investing significant telescope observing time on selected targets and for deriving robust conclusions from our dark matter search efforts. In this regard, a precise characterization of the statistical and structural properties of subhalos becomes critical. In this Special Issue, we aim to summarize where we stand today on our knowledge of the different aspects of the dark matter halo substructure; to identify what are the remaining big questions, and how we could address these; and, by doing so, to find new avenues for research.
gamma rays --- indirect searches. --- semi-analytic modeling --- cosmological model --- indirect dark matter searches --- particle dark matter --- indirect detection --- gamma-rays and neutrinos --- galactic subhalos --- indirect searches --- statistical data analysis --- subhalo boost --- dark matter halos --- halo substructure --- structure formation --- dark matter annihilation --- dark matter searches --- dwarf spheroidal satellite galaxies --- galactic sub-halos --- subhalos --- dwarf spheroidal galaxies --- gamma-rays --- cosmological N-body simulations --- dark matter
Choose an application
Investigation of the effect of casting and crystallization on the structure and properties of the resulting light alloys and, in particular, research connected with detailed analysis of the microstructure of light alloys obtained using various external influences of ultrasonic, vibration, magnetic, and mechanical processing on the casting and crystallization are discussed. Research on the study of introduction of additives (modifiers, reinforcers, including nanosized ones, etc.) into the melt during the crystallization process, the technological properties of casting (fluidity, segregation, shrinkage, etc.), the structure and physicomechanical properties of light alloys are also included.
aluminum alloy --- titanium diboride --- master alloy --- structure --- mechanical properties --- aluminum --- alumina nanoparticles --- microstructure --- elastic limit --- strength --- Al/SiC composite --- porosity in composites --- finite element analysis --- Al–Mg–Si --- α-Al8(Fe2Mn)Si particles --- solution treatment --- ageing --- dissolution of Fe --- Differential Scanning Calorimetry --- casting speed --- solidification --- Ohno continuous casting --- gravity casting --- dendritic spacing --- composite materials --- hypereutectic aluminum alloys --- Al-Zn-Mg alloys --- rapid solidification --- eutectic --- CALPHAD --- intermetallics --- precipitation hardening --- aluminum-zirconium wire alloys --- electromagnetic casting --- drawing --- electrical conductivity --- phase composition --- nanoparticles --- friction stir processing --- aluminum alloys --- copper alloys --- titanium alloys --- magnesium alloys --- subsurface gradient structures --- surface modification --- hardening with reinforcing particles --- hybrid in situ surfaces --- friction stir welding --- grade 2 titanium alloy --- ZhS6U Ni-based superalloy --- welding tool --- tool wear --- structure formation --- adhesion --- metal transfer --- in-situ friction stir process --- Al-Cu metallomatrix composite --- intermetallic compounds --- diffusion-controlled reactions --- Al-Cu eutectics --- intermetallides --- hydrides --- TiAl system --- n/a --- Al-Mg-Si
Listing 1 - 2 of 2 |
Sort by
|