Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers, and scientists. AM has the ability to fabricate materials to produce parts with complex shapes without any theoretical restrictions combined with added functionalities. Selective laser melting (SLM), also known as laser-based powder bed processing (LPBF), is one of the main AM process that can be used to fabricate wide variety of materials that are Al-, Ti-, Fe-, Ni-, Co-, W-, Ag-, and Au-based, etc. However, several challenges need to be addressed systematically, such as development of new materials that suit the SLM process conditions so the process capabilities can be fully used to produce new properties in these materials. Other issues in the field are the lack of microstructure–property correlations, premature failure, etc. Accordingly, this Special Issue (book) focuses mainly on the microstructure-correlation in three different alloys: AlSi10Mg, Ti6Al4V, and 304L stainless steel, where six articles are presented. Hence, this Special Issue outlines microstructure–property correlations in the SLM processed materials and provides a value addition to the field of AM.
n/a --- geometrical dimensioning and tolerancing (GD and T) --- Ti–6Al–4V --- microstructure --- compression testing --- analytical melt pool calculation --- stainless steel --- build orientation --- surface roughness --- process variability --- Tukey’s test --- additive manufacturing --- phase change --- AlSi10Mg --- analysis of variance --- SLM --- repeatability and reproducibility --- inter-repeatability --- distortion analysis --- laser powder bed fusion --- porosity --- dimensional quality analysis --- cylindrical symmetry --- metrology --- mechanical properties --- HIP --- fatigue strength --- process capability --- hatch angle --- line heat source --- selective laser melting --- selective laser melting (SLM) --- intra-repeatability --- Ti-6Al-4V --- Tukey's test
Choose an application
Since the introduction of personalized medicine, the primary focus of imaging has moved from detection and diagnosis to tissue characterization, the determination of prognosis, prediction of treatment efficacy, and measurement of treatment response. Precision (personalized) imaging heavily relies on the use of hybrid technologies and quantitative imaging biomarkers. The growing number of promising theragnostics require accurate quantification for pre- and post-treatment dosimetry. Furthermore, quantification is required in the pharmacokinetic analysis of new tracers and drugs and in the assessment of drug resistance. Positron Emission Tomography (PET) is, by nature, a quantitative imaging tool, relating the time–activity concentration in tissues and the basic functional parameters governing the biological processes being studied. Recent innovations in single photon emission computed tomography (SPECT) reconstruction techniques have allowed for SPECT to move from relative/semi-quantitative measures to absolute quantification. The strength of PET and SPECT is that they permit whole-body molecular imaging in a noninvasive way, evaluating multiple disease sites. Furthermore, serial scanning can be performed, allowing for the measurement of functional changes over time during therapeutic interventions. This Special Issue highlights the hot topics on quantitative PET and SPECT.
Medicine --- Clinical & internal medicine --- PET --- SPECT --- PET/CT --- SPECT/CT --- Absolute quantification --- Quantitative accuracy --- Dynamic PET --- Phantoms --- Repeatability --- Tumor delineation --- Prognosis --- Dosimetry --- Radiomics --- Artificial intelligence --- Deep learning --- Imaging biomarkers --- Tumor segmentation --- Harmonization
Choose an application
The foundations of sports cardiology include promoting physical activity and providing a safe environment for training and competition for all athletes at all levels, from professional to recreational. To combine these two aims, reliable tools to perform preparticipation screenings are needed. Moreover, those at high risk of potentially life-threatening events should be advised to limit their training load, while others should be reassured that there is no exercise-related cardiovascular risk. We are currently witnessing the advent of new portable devices for remote and mobile heart monitoring and several new and promising biochemical markers, which can support athletes’ diagnostic processes. In this Special Issue of the Diagnostics journal entitled “Diagnostic Challenges in Sports Cardiology”, we present a series of 13 manuscripts, including eight original works, three reviews, and two case reports, which give a glimpse into the current research topics in the area of sports cardiology.
professional ultramarathon runner --- echocardiography --- electrocardiogram --- magnetic resonance imaging --- Cardiac 31P-MR spectroscopy --- blood tests --- running --- exercise --- marathon --- troponin --- risk factor --- AVNRT --- endurance training --- HRM --- triathlon --- exertion cardiac arrhythmia --- Holter ECG --- sudden cardiac arrest --- CPVT --- catecholaminergic polymorphic ventricular tachycardia --- genetic testing --- cardiovascular capacity --- performance --- cross-country skiing amateur --- heart --- vegan --- athletes’ hearts --- runners --- diet --- biomarkers --- amateur --- sports cardiology --- microRNA --- endurance sport --- adaptive changes --- cardiac hypertrophy --- cardiac fibrosis --- asymptomatic preexcitation --- athlete --- WPW --- heart rate --- respiratory rate --- heart rate variability --- reliability --- repeatability --- modern penthatlon --- athletes --- heart rate monitor --- ECG --- portable/wearable monitoring system --- endurance running --- cycling --- long-term assessment --- arrhythmia --- exertion rhythm disorders --- QARDIO MD system --- modern pentathlon --- physiological state --- autonomic nervous system --- caffeine --- anabolic androgenic steroids --- heart disease --- cardiac magnetic resonance imaging --- n/a --- athletes' hearts
Choose an application
This book, edited by Prof. Marta Rencz and Prof Andras Poppe, Budapest University of Technology and Economics, and by Prof. Lorenzo Codecasa, Politecnico di Milano, collects fourteen papers carefully selected for the “thermal and electro-thermal system simulation” Special Issue of Energies. These contributions present the latest results in a currently very “hot” topic in electronics: the thermal and electro-thermal simulation of electronic components and systems. Several papers here proposed have turned out to be extended versions of papers presented at THERMINIC 2019, which was one of the 2019 stages of choice for presenting outstanding contributions on thermal and electro-thermal simulation of electronic systems. The papers proposed to the thermal community in this book deal with modeling and simulation of state-of-the-art applications which are highly critical from the thermal point of view, and around which there is great research activity in both industry and academia. In particular, contributions are proposed on the multi-physics simulation of families of electronic packages, multi-physics advanced modeling in power electronics, multiphysics modeling and simulation of LEDs, batteries and other micro and nano-structures.
lithium-ion battery --- thermal modelling --- electro-thermal model --- heat generation --- experimental validation --- thermal transient testing --- non-destructive testing --- thermal testability --- accuracy repeatability and reproducibility of thermal measurements --- thermal testing standards --- 3D IC --- microchannels --- liquid cooling --- compact thermal model --- thermal simulation --- hotspot --- thermal-aware task scheduling --- DVFS --- statistical analysis --- electronic packages --- detailed thermal model --- Joint Electron Device Engineering Council (JEDEC) metrics --- thermal impedance --- AlGaN-GaN HEMT --- TDTR --- thermal conductivity --- thermal interface resistance --- size effect --- phonon transport mechanisms --- nonlinear thermal model --- SPICE --- pulse transformer --- thermal phenomena --- self-heating --- modelling --- measurements --- BCI-DCTM --- ROM --- modal approach --- BGA --- module temperature --- solar energy --- heat transfer mechanisms --- power LED measurement and simulation --- life testing --- reliability testing --- LM-80 --- TM-21 --- LED lifetime modelling --- LED multi-domain modelling --- Spice-like modelling of LEDs --- lifetime extrapolation and modelling of LEDs --- beyond CMOS --- VO2 --- thermal-electronic circuits --- electro-thermal simulation --- vertical structure --- power LEDs --- thermal pads --- thermal resistance --- optical efficiency --- electronics cooling --- Light-emitting diodes --- CoB LEDs --- multi-domain modeling --- finite volume method --- phosphor modeling --- magnetic nanoparticle --- microfluidics --- CFD --- OpenFOAM --- two-phase solver --- rheology --- LED --- Delphi4LED --- digital twin --- digital luminaire design --- computation time --- Industry 4.0
Choose an application
Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation.
white light interference --- laser interference --- surface positioning --- end-plate surface distance measurement --- spherical diamond wheel --- diamond roller --- form truing --- in-situ measurements --- topography measurement --- differential measurement system --- modular design --- confocal sensor --- film interferometry --- over-constrained mechanism --- geometric deviations --- multi-tasking machine tools --- identification method --- squareness of translational axes --- metrology --- step gauge --- length calibration --- multi-path laser synthesis technology --- measurement mechanism --- machine tool --- surface shape contour --- on-site measurement --- positional relation --- scanless 3D imaging --- compressed sensing --- depth detection --- single-pixel detector --- blade tip timing --- circumferential Fourier fit --- synchronous vibration --- optical angle sensor --- mode-locked femtosecond laser --- optical frequency comb --- laser autocollimation --- diffraction grating --- absolute angle measurement --- nonlinear optics --- second harmonic generation --- aeroengine blade --- blade twist --- measurement and evaluation --- a priori planning --- geometric analysis --- automated optical inspection --- precision measurement --- circular contour --- edge detection --- measurement system analysis --- coordinate measuring machine --- reproducibility --- GD& --- T --- quality --- measurement uncertainty --- precision metrology --- form measurement --- stitching linear-scan method --- roundness measurement --- Monte Carlo method --- single point diamond tool --- cutting edge radius --- reversal method --- nanoindentation system --- elastic recovery --- surface charge distribution --- point probing characteristics --- spherical scattering electrical field probe --- miniature internal structures --- high aspect ratios --- circulating cooling water --- dynamic thermal filtering --- precision manufacturing --- quick response --- temperature stability --- thermal management --- dual-axis level --- light refraction --- light transmission --- angle measurement --- differential Fabry–Pérot interferometer --- homodyne interferometer --- nonlinearity error --- linear displacement --- chromatic confocal probe --- femtosecond laser --- off-axis differential method --- tracking local minimum method --- laser triangulation displacement sensor (LTDS) --- dispensing robot --- location system --- actual laser imaging waveform --- centroid difference --- repeatability accuracy --- dynamic response speed --- absolute distance measurement --- system error correction --- surface texture measurement --- confocal sensing --- surface form tracing --- 3D reconstruction --- roughness --- in-process --- metrology for machining --- optical coherence tomography --- wafer die --- defect detection --- generative adversarial network (GAN) --- you only look once version 3 (YOLOv3) --- pad dressing --- dynamic measurement --- CMP --- pad uniformity --- pad lifetime --- n/a --- differential Fabry-Pérot interferometer
Choose an application
In recent years, many technologies for gait and posture assessments have emerged. Wearable sensors, active and passive in-house monitors, and many combinations thereof all promise to provide accurate measures of physical activity, gait, and posture parameters. Motivated by market projections for wearable technologies and driven by recent technological innovations in wearable sensors (MEMs, electronic textiles, wireless communications, etc.), wearable health/performance research is growing rapidly and has the potential to transform future healthcare from disease treatment to disease prevention. The objective of this Special Issue is to address and disseminate the latest gait, posture, and activity monitoring systems as well as various mathematical models/methods that characterize mobility functions. This Special Issue focuses on wearable monitoring systems and physical sensors, and its mathematical models can be utilized in varied environments under varied conditions to monitor health and performance
step detection --- machine learning --- outlier detection --- transition matrices --- autoencoders --- ground reaction force (GRF) --- micro electro mechanical systems (MEMS) --- gait --- walk --- bipedal locomotion --- 3-axis force sensor --- shoe --- force distribution --- multi-sensor gait classification --- distributed compressed sensing --- joint sparse representation classification --- telemonitoring of gait --- operating range --- accelerometer --- stride length --- peak tibial acceleration --- running velocity --- wearable sensors --- feedback technology --- rehabilitation --- motor control --- cerebral palsy --- inertial sensors --- gait events --- spatiotemporal parameters --- postural control --- falls in the elderly --- fall risk assessment --- low-cost instrumented insoles --- foot plantar center of pressure --- flexible sensor --- gait recognition --- piezoelectric material --- wearable --- adaptability --- force sensitive resistors --- self-tuning triple threshold algorithm --- sweat sensor --- sweat rate --- dehydration --- IoT --- PDMS --- surface electromyography --- handgrip force --- force-varying muscle contraction --- nonlinear analysis --- wavelet scale selection --- inertial measurement unit --- gyroscope --- asymmetry --- feature extraction --- gait analysis --- lower limb prosthesis --- trans-femoral amputee --- MR damper --- knee damping control --- inertial measurement units --- motion analysis --- kinematics --- functional activity --- repeatability --- reliability --- biomechanics --- cognitive frailty --- cognitive–motor impairment --- Alzheimer’s disease --- motor planning error --- instrumented trail-making task --- ankle reaching task --- dual task walking --- nondestructive --- joint moment --- partial weight loading --- muscle contributions --- sit-to-stand training --- motion parameters --- step length --- self-adaptation --- Parkinson’s disease (PD) --- tremor dominant (TD) --- postural instability and gait difficulty (PIGD) --- center of pressure (COP) --- fast Fourier transform (FFT) --- wavelet transform (WT) --- fall detection system --- smartphones --- accelerometers --- machine learning algorithms --- supervised learning --- ANOVA analysis --- Step-detection --- ActiGraph --- Pedometer --- acceleration --- physical activity --- physical function --- physical performance test --- chair stand --- sit to stand transfer --- wearables --- gyroscopes --- e-Health application --- physical rehabilitation --- shear and plantar pressure sensor --- biaxial optical fiber sensor --- multiplexed fiber Bragg gratings --- frailty --- pre-frail --- wearable sensor --- sedentary behavior --- moderate-to-vigorous activity --- steps --- fall detection --- elderly people monitoring --- telerehabilitation --- virtual therapy --- Kinect --- eHealth --- telemedicine --- insole --- injury prevention --- biomechanical gait variable estimation --- inertial gait variable --- total knee arthroplasty --- falls in healthy elderly --- fall prevention --- biometrics --- human gait recognition --- ground reaction forces --- Microsoft Kinect --- high heels --- fusion data --- ensemble classifiers --- accidental falls --- older adults --- neural networks --- convolutional neural network --- long short-term memory --- accelerometry --- obesity --- nonlinear --- electrostatic field sensing --- gait measurement --- temporal parameters --- artificial neural network --- propulsion --- aging --- walking --- smart footwear --- frailty prediction --- fall risk --- smartphone based assessments --- adverse post-operative outcome --- intelligent surveillance systems --- human fall detection --- health and well-being --- safety and security --- n/a --- movement control --- anterior cruciate ligament --- kinetics --- real-time feedback --- biomechanical gait features --- impaired gait classification --- pattern recognition --- sensors --- clinical --- knee --- osteoarthritis --- shear stress --- callus --- woman --- TUG --- IMU --- geriatric assessment --- semi-unsupervised --- self-assessment --- domestic environment --- functional decline --- symmetry --- trunk movement --- autocorrelation --- gait rehabilitation --- wearable device --- IMU sensors --- gait classification --- stroke patients --- neurological disorders --- scanning laser rangefinders (SLR), GAITRite --- cadence --- velocity and stride-length --- power --- angular velocity --- human motion measurement --- sensor fusion --- complementary filter --- fuzzy logic --- inertial and magnetic sensors --- ESOQ-2 --- Parkinson’s disease --- UPDRS --- movement disorders --- human computer interface --- RGB-Depth --- hand tracking --- automated assessment --- at-home monitoring --- Parkinson’s Diseases --- motorized walker --- haptic cue --- gait pattern --- statistics study --- walk detection --- step counting --- signal processing --- plantar pressure --- flat foot --- insoles --- force sensors --- arch index --- sports analytics --- deep learning --- classification --- inertial sensor --- cross-country skiing --- classical style --- skating style --- batteryless strain sensor --- wireless strain sensor --- resonant frequency modulation --- Ecoflex --- human activity recognition --- smartphone --- human daily activity --- ensemble method --- running --- velocity --- smart shoe --- concussion --- inertial motion units (IMUs) --- vestibular exercises --- validation --- motion capture --- user intent recognition --- transfemoral prosthesis --- multi-objective optimization --- biogeography-based optimization --- smart cane --- weight-bearing --- health monitoring --- wearable/inertial sensors --- regularity --- variability --- human --- motion --- locomotion --- UPDRS tasks --- posture --- postural stability --- center of mass --- RGB-depth --- neurorehabilitation --- hallux abductus valgus --- high heel --- proximal phalanx of the hallux --- abduction --- valgus --- ultrasonography --- Achilles tendon --- diagnostic --- imaging --- tendinopathy --- foot insoles --- electromyography --- joint instability --- muscle contractions --- motorcycling --- wearable electronic devices --- validity --- relative movement --- lower limb prosthetics --- biomechanic measurement tasks --- quantifying socket fit --- rehabilitation exercise --- dynamic time warping --- automatic coaching --- exergame --- fine-wire intramuscular EMG electrode --- non-human primate model --- traumatic spinal cord injury --- wavelet transform --- relative power --- linear mixed model --- VO2 --- calibration --- MET --- VO2net --- speed --- equivalent speed --- free-living --- children --- adolescents --- adults --- gait event detection --- hemiplegic gait --- appropriate mother wavelet --- acceleration signal --- wavelet-selection criteria --- conductive textile --- stroke --- hemiparetic --- real-time monitoring --- lower limb locomotion activity --- triplet Markov model --- semi-Markov model --- on-line EM algorithm --- human kinematics --- phase difference angle --- cognitive-motor impairment --- Alzheimer's disease --- Parkinson's disease (PD) --- Parkinson's disease --- Parkinson's Diseases
Choose an application
In recent years, many technologies for gait and posture assessments have emerged. Wearable sensors, active and passive in-house monitors, and many combinations thereof all promise to provide accurate measures of physical activity, gait, and posture parameters. Motivated by market projections for wearable technologies and driven by recent technological innovations in wearable sensors (MEMs, electronic textiles, wireless communications, etc.), wearable health/performance research is growing rapidly and has the potential to transform future healthcare from disease treatment to disease prevention. The objective of this Special Issue is to address and disseminate the latest gait, posture, and activity monitoring systems as well as various mathematical models/methods that characterize mobility functions. This Special Issue focuses on wearable monitoring systems and physical sensors, and its mathematical models can be utilized in varied environments under varied conditions to monitor health and performance
step detection --- machine learning --- outlier detection --- transition matrices --- autoencoders --- ground reaction force (GRF) --- micro electro mechanical systems (MEMS) --- gait --- walk --- bipedal locomotion --- 3-axis force sensor --- shoe --- force distribution --- multi-sensor gait classification --- distributed compressed sensing --- joint sparse representation classification --- telemonitoring of gait --- operating range --- accelerometer --- stride length --- peak tibial acceleration --- running velocity --- wearable sensors --- feedback technology --- rehabilitation --- motor control --- cerebral palsy --- inertial sensors --- gait events --- spatiotemporal parameters --- postural control --- falls in the elderly --- fall risk assessment --- low-cost instrumented insoles --- foot plantar center of pressure --- flexible sensor --- gait recognition --- piezoelectric material --- wearable --- adaptability --- force sensitive resistors --- self-tuning triple threshold algorithm --- sweat sensor --- sweat rate --- dehydration --- IoT --- PDMS --- surface electromyography --- handgrip force --- force-varying muscle contraction --- nonlinear analysis --- wavelet scale selection --- inertial measurement unit --- gyroscope --- asymmetry --- feature extraction --- gait analysis --- lower limb prosthesis --- trans-femoral amputee --- MR damper --- knee damping control --- inertial measurement units --- motion analysis --- kinematics --- functional activity --- repeatability --- reliability --- biomechanics --- cognitive frailty --- cognitive–motor impairment --- Alzheimer’s disease --- motor planning error --- instrumented trail-making task --- ankle reaching task --- dual task walking --- nondestructive --- joint moment --- partial weight loading --- muscle contributions --- sit-to-stand training --- motion parameters --- step length --- self-adaptation --- Parkinson’s disease (PD) --- tremor dominant (TD) --- postural instability and gait difficulty (PIGD) --- center of pressure (COP) --- fast Fourier transform (FFT) --- wavelet transform (WT) --- fall detection system --- smartphones --- accelerometers --- machine learning algorithms --- supervised learning --- ANOVA analysis --- Step-detection --- ActiGraph --- Pedometer --- acceleration --- physical activity --- physical function --- physical performance test --- chair stand --- sit to stand transfer --- wearables --- gyroscopes --- e-Health application --- physical rehabilitation --- shear and plantar pressure sensor --- biaxial optical fiber sensor --- multiplexed fiber Bragg gratings --- frailty --- pre-frail --- wearable sensor --- sedentary behavior --- moderate-to-vigorous activity --- steps --- fall detection --- elderly people monitoring --- telerehabilitation --- virtual therapy --- Kinect --- eHealth --- telemedicine --- insole --- injury prevention --- biomechanical gait variable estimation --- inertial gait variable --- total knee arthroplasty --- falls in healthy elderly --- fall prevention --- biometrics --- human gait recognition --- ground reaction forces --- Microsoft Kinect --- high heels --- fusion data --- ensemble classifiers --- accidental falls --- older adults --- neural networks --- convolutional neural network --- long short-term memory --- accelerometry --- obesity --- nonlinear --- electrostatic field sensing --- gait measurement --- temporal parameters --- artificial neural network --- propulsion --- aging --- walking --- smart footwear --- frailty prediction --- fall risk --- smartphone based assessments --- adverse post-operative outcome --- intelligent surveillance systems --- human fall detection --- health and well-being --- safety and security --- n/a --- movement control --- anterior cruciate ligament --- kinetics --- real-time feedback --- biomechanical gait features --- impaired gait classification --- pattern recognition --- sensors --- clinical --- knee --- osteoarthritis --- shear stress --- callus --- woman --- TUG --- IMU --- geriatric assessment --- semi-unsupervised --- self-assessment --- domestic environment --- functional decline --- symmetry --- trunk movement --- autocorrelation --- gait rehabilitation --- wearable device --- IMU sensors --- gait classification --- stroke patients --- neurological disorders --- scanning laser rangefinders (SLR), GAITRite --- cadence --- velocity and stride-length --- power --- angular velocity --- human motion measurement --- sensor fusion --- complementary filter --- fuzzy logic --- inertial and magnetic sensors --- ESOQ-2 --- Parkinson’s disease --- UPDRS --- movement disorders --- human computer interface --- RGB-Depth --- hand tracking --- automated assessment --- at-home monitoring --- Parkinson’s Diseases --- motorized walker --- haptic cue --- gait pattern --- statistics study --- walk detection --- step counting --- signal processing --- plantar pressure --- flat foot --- insoles --- force sensors --- arch index --- sports analytics --- deep learning --- classification --- inertial sensor --- cross-country skiing --- classical style --- skating style --- batteryless strain sensor --- wireless strain sensor --- resonant frequency modulation --- Ecoflex --- human activity recognition --- smartphone --- human daily activity --- ensemble method --- running --- velocity --- smart shoe --- concussion --- inertial motion units (IMUs) --- vestibular exercises --- validation --- motion capture --- user intent recognition --- transfemoral prosthesis --- multi-objective optimization --- biogeography-based optimization --- smart cane --- weight-bearing --- health monitoring --- wearable/inertial sensors --- regularity --- variability --- human --- motion --- locomotion --- UPDRS tasks --- posture --- postural stability --- center of mass --- RGB-depth --- neurorehabilitation --- hallux abductus valgus --- high heel --- proximal phalanx of the hallux --- abduction --- valgus --- ultrasonography --- Achilles tendon --- diagnostic --- imaging --- tendinopathy --- foot insoles --- electromyography --- joint instability --- muscle contractions --- motorcycling --- wearable electronic devices --- validity --- relative movement --- lower limb prosthetics --- biomechanic measurement tasks --- quantifying socket fit --- rehabilitation exercise --- dynamic time warping --- automatic coaching --- exergame --- fine-wire intramuscular EMG electrode --- non-human primate model --- traumatic spinal cord injury --- wavelet transform --- relative power --- linear mixed model --- VO2 --- calibration --- MET --- VO2net --- speed --- equivalent speed --- free-living --- children --- adolescents --- adults --- gait event detection --- hemiplegic gait --- appropriate mother wavelet --- acceleration signal --- wavelet-selection criteria --- conductive textile --- stroke --- hemiparetic --- real-time monitoring --- lower limb locomotion activity --- triplet Markov model --- semi-Markov model --- on-line EM algorithm --- human kinematics --- phase difference angle --- cognitive-motor impairment --- Alzheimer's disease --- Parkinson's disease (PD) --- Parkinson's disease --- Parkinson's Diseases
Choose an application
In recent years, many technologies for gait and posture assessments have emerged. Wearable sensors, active and passive in-house monitors, and many combinations thereof all promise to provide accurate measures of physical activity, gait, and posture parameters. Motivated by market projections for wearable technologies and driven by recent technological innovations in wearable sensors (MEMs, electronic textiles, wireless communications, etc.), wearable health/performance research is growing rapidly and has the potential to transform future healthcare from disease treatment to disease prevention. The objective of this Special Issue is to address and disseminate the latest gait, posture, and activity monitoring systems as well as various mathematical models/methods that characterize mobility functions. This Special Issue focuses on wearable monitoring systems and physical sensors, and its mathematical models can be utilized in varied environments under varied conditions to monitor health and performance
step detection --- machine learning --- outlier detection --- transition matrices --- autoencoders --- ground reaction force (GRF) --- micro electro mechanical systems (MEMS) --- gait --- walk --- bipedal locomotion --- 3-axis force sensor --- shoe --- force distribution --- multi-sensor gait classification --- distributed compressed sensing --- joint sparse representation classification --- telemonitoring of gait --- operating range --- accelerometer --- stride length --- peak tibial acceleration --- running velocity --- wearable sensors --- feedback technology --- rehabilitation --- motor control --- cerebral palsy --- inertial sensors --- gait events --- spatiotemporal parameters --- postural control --- falls in the elderly --- fall risk assessment --- low-cost instrumented insoles --- foot plantar center of pressure --- flexible sensor --- gait recognition --- piezoelectric material --- wearable --- adaptability --- force sensitive resistors --- self-tuning triple threshold algorithm --- sweat sensor --- sweat rate --- dehydration --- IoT --- PDMS --- surface electromyography --- handgrip force --- force-varying muscle contraction --- nonlinear analysis --- wavelet scale selection --- inertial measurement unit --- gyroscope --- asymmetry --- feature extraction --- gait analysis --- lower limb prosthesis --- trans-femoral amputee --- MR damper --- knee damping control --- inertial measurement units --- motion analysis --- kinematics --- functional activity --- repeatability --- reliability --- biomechanics --- cognitive frailty --- cognitive–motor impairment --- Alzheimer’s disease --- motor planning error --- instrumented trail-making task --- ankle reaching task --- dual task walking --- nondestructive --- joint moment --- partial weight loading --- muscle contributions --- sit-to-stand training --- motion parameters --- step length --- self-adaptation --- Parkinson’s disease (PD) --- tremor dominant (TD) --- postural instability and gait difficulty (PIGD) --- center of pressure (COP) --- fast Fourier transform (FFT) --- wavelet transform (WT) --- fall detection system --- smartphones --- accelerometers --- machine learning algorithms --- supervised learning --- ANOVA analysis --- Step-detection --- ActiGraph --- Pedometer --- acceleration --- physical activity --- physical function --- physical performance test --- chair stand --- sit to stand transfer --- wearables --- gyroscopes --- e-Health application --- physical rehabilitation --- shear and plantar pressure sensor --- biaxial optical fiber sensor --- multiplexed fiber Bragg gratings --- frailty --- pre-frail --- wearable sensor --- sedentary behavior --- moderate-to-vigorous activity --- steps --- fall detection --- elderly people monitoring --- telerehabilitation --- virtual therapy --- Kinect --- eHealth --- telemedicine --- insole --- injury prevention --- biomechanical gait variable estimation --- inertial gait variable --- total knee arthroplasty --- falls in healthy elderly --- fall prevention --- biometrics --- human gait recognition --- ground reaction forces --- Microsoft Kinect --- high heels --- fusion data --- ensemble classifiers --- accidental falls --- older adults --- neural networks --- convolutional neural network --- long short-term memory --- accelerometry --- obesity --- nonlinear --- electrostatic field sensing --- gait measurement --- temporal parameters --- artificial neural network --- propulsion --- aging --- walking --- smart footwear --- frailty prediction --- fall risk --- smartphone based assessments --- adverse post-operative outcome --- intelligent surveillance systems --- human fall detection --- health and well-being --- safety and security --- n/a --- movement control --- anterior cruciate ligament --- kinetics --- real-time feedback --- biomechanical gait features --- impaired gait classification --- pattern recognition --- sensors --- clinical --- knee --- osteoarthritis --- shear stress --- callus --- woman --- TUG --- IMU --- geriatric assessment --- semi-unsupervised --- self-assessment --- domestic environment --- functional decline --- symmetry --- trunk movement --- autocorrelation --- gait rehabilitation --- wearable device --- IMU sensors --- gait classification --- stroke patients --- neurological disorders --- scanning laser rangefinders (SLR), GAITRite --- cadence --- velocity and stride-length --- power --- angular velocity --- human motion measurement --- sensor fusion --- complementary filter --- fuzzy logic --- inertial and magnetic sensors --- ESOQ-2 --- Parkinson’s disease --- UPDRS --- movement disorders --- human computer interface --- RGB-Depth --- hand tracking --- automated assessment --- at-home monitoring --- Parkinson’s Diseases --- motorized walker --- haptic cue --- gait pattern --- statistics study --- walk detection --- step counting --- signal processing --- plantar pressure --- flat foot --- insoles --- force sensors --- arch index --- sports analytics --- deep learning --- classification --- inertial sensor --- cross-country skiing --- classical style --- skating style --- batteryless strain sensor --- wireless strain sensor --- resonant frequency modulation --- Ecoflex --- human activity recognition --- smartphone --- human daily activity --- ensemble method --- running --- velocity --- smart shoe --- concussion --- inertial motion units (IMUs) --- vestibular exercises --- validation --- motion capture --- user intent recognition --- transfemoral prosthesis --- multi-objective optimization --- biogeography-based optimization --- smart cane --- weight-bearing --- health monitoring --- wearable/inertial sensors --- regularity --- variability --- human --- motion --- locomotion --- UPDRS tasks --- posture --- postural stability --- center of mass --- RGB-depth --- neurorehabilitation --- hallux abductus valgus --- high heel --- proximal phalanx of the hallux --- abduction --- valgus --- ultrasonography --- Achilles tendon --- diagnostic --- imaging --- tendinopathy --- foot insoles --- electromyography --- joint instability --- muscle contractions --- motorcycling --- wearable electronic devices --- validity --- relative movement --- lower limb prosthetics --- biomechanic measurement tasks --- quantifying socket fit --- rehabilitation exercise --- dynamic time warping --- automatic coaching --- exergame --- fine-wire intramuscular EMG electrode --- non-human primate model --- traumatic spinal cord injury --- wavelet transform --- relative power --- linear mixed model --- VO2 --- calibration --- MET --- VO2net --- speed --- equivalent speed --- free-living --- children --- adolescents --- adults --- gait event detection --- hemiplegic gait --- appropriate mother wavelet --- acceleration signal --- wavelet-selection criteria --- conductive textile --- stroke --- hemiparetic --- real-time monitoring --- lower limb locomotion activity --- triplet Markov model --- semi-Markov model --- on-line EM algorithm --- human kinematics --- phase difference angle --- cognitive-motor impairment --- Alzheimer's disease --- Parkinson's disease (PD) --- Parkinson's disease --- Parkinson's Diseases
Listing 1 - 8 of 8 |
Sort by
|