Listing 1 - 10 of 133 | << page >> |
Sort by
|
Choose an application
Manuel consacré au calcul numérique et au traitement statistique des données expérimentales : résolution des équations f(x) = 0, interpolation, calcul matriciel, calcul des intégrales. et nombreux problèmes et exercices corrigés. De la maîtrise au 3e cycle, pour ingénieurs d'étude et chercheurs.
Choose an application
The purpose of this book is to provide an introduction to numerical modelling of the ocean and the atmosphere. It originates from courses given at Stockholm University and is intended to serve as a textbook for students in meteorology and oceanography with a background in mathematics and physics. Focus is on numerical schemes for the most commonly used equations in oceanography and meteorology as well as on the stability, precision and other properties of these schemes. Simple equations capturing the properties of the primitive equations employed in models of the ocean and atmosphere will be used. These model equations are solved numerically on a grid by discretisation, the derivatives of the differential equations being replaced by finite-difference approximations. The focus will be on the basic numerical methods used for oceanographic and atmospheric modelling. These models are based on the Navier-Stokes equations (including the Coriolis effect) and a tracer equation for heat in both the atmosphere and ocean and tracer equations for humidity and salt in the atmosphere and ocean, respectively. A coupled atmospheric and oceanic general circulation model represents the core part of an Earth System climate model. The book starts by presenting the most common types of partial differential equations and finite difference schemes used in meteorology and oceanography. Subsequently the limitations of these numerical schemes as regards stability, accuracy, presence of computational modes and accuracy the computationally determined phase speed are discussed. The shallow-water equations are discretised for different spatial grids and friction and diffusion terms are introduced. Hereafter implicit and semi-implicit schemes are discussed as well as the semi-Lagrangian technique. Coordinates for atmospheric as well as oceanic models are presented as well as a highly simplified 3D model. A brief description is given of how some atmospheric general circulation models use spectral methods as "horizontal coordinates". Finally, some "pen-and-paper" theoretical exercises and a number of GFD computer exercises are given.
Choose an application
This Special Issue focuses mainly on techniques and the relative formalism typical of numerical methods and therefore of numerical analysis, more generally. These fields of study of mathematics represent an important field of investigation both in the field of applied mathematics and even more exquisitely in the pure research of the theory of approximation and the study of polynomial relations as well as in the analysis of the solutions of the differential equations both ordinary and partial derivatives. Therefore, a substantial part of research on the topic of numerical analysis cannot exclude the fundamental role played by approximation theory and some of the tools used to develop this research. In this Special Issue, we want to draw attention to the mathematical methods used in numerical analysis, such as special functions, orthogonal polynomials, and their theoretical tools, such as Lie algebra, to study the concepts and properties of some special and advanced methods, which are useful in the description of solutions of linear and nonlinear differential equations. A further field of investigation is dedicated to the theory and related properties of fractional calculus with its adequate application to numerical methods.
Choose an application
Rapid advances in modelling research have created new challenges and opportunities for statisticians. Statistical inference in observational studies and many other emerging fields have motivated statisticians worldwide to develop cutting-edge methods and analytical strategies. The aim of this reprint is to showcase the applications and methodological research in all fields of computational statistics. This reprint will provide a forum for computer scientists, mathematicians, and statisticians working in a variety of areas in statistics, including biometrics, econometrics, data analysis, graphics, and simulation.
Choose an application
In recent years, academic advancement and access to funds that stimulate scientific research have been conditioned by the scientific production of individual scientists as well as the production of scientific centers, institutes and universities. This has led to an increase in interest in the accelerated assessment and ranking of scientists and scientific institutions. Scientometry is a sub-discipline of information sciences that measures achievement in science. This book provides the reader with a detailed insight into relevant scientometric methods and criteria, their individual strengths and weaknesses in the process of ranking scientists, scientific centers and institutions, as well as their application to the process of planning scientific projects and isolated medical specialties.
Choose an application
Reverse engineering encompasses a wide spectrum of activities aimed at extracting information on the function, structure, and behavior of man-made or natural artifacts. Increases in data sources, processing power, and improved data mining and processing algorithms have opened new fields of application for reverse engineering. In this book, we present twelve applications of reverse engineering in the software engineering, shape engineering, and medical and life sciences application domains. The book can serve as a guideline to practitioners in the above fields to the state-of-the-art in reverse engineering techniques, tools, and use-cases, as well as an overview of open challenges for reverse engineering researchers.
Numerical analysis. --- Mathematical analysis --- Numerical analysis
Choose an application
This reprint was established after the 9th International Workshop on Numerical and Evolutionary Optimization (NEO), representing a collection of papers on the intersection of the two research areas covered at this workshop: numerical optimization and evolutionary search techniques. While focusing on the design of fast and reliable methods lying across these two paradigms, the resulting techniques are strongly applicable to a broad class of real-world problems, such as pattern recognition, routing, energy, lines of production, prediction, and modeling, among others. This volume is intended to serve as a useful reference for mathematicians, engineers, and computer scientists to explore current issues and solutions emerging from these mathematical and computational methods and their applications.
Choose an application
Choose an application
Mathematics --- Numerical analysis --- Mathematics. --- Numerical analysis. --- Mathematical analysis --- Math --- Science
Choose an application
There are three volumes in this body of work. In Volume 1, we lay the foundation for a general theory of organizing. We propose that organizing is a continuous process of ongoing mutual or reciprocal influence between objects (e.g., human actors) in a field, whereby a field is infinite and connects all the objects in it much like electromagnetic fields influence atomic and molecular charged objects or gravity fields influence inanimate objects with mass such as planets and stars. We use field theory to build what we call the Network Field Model. In this model, human actors are modeled as point-like objects in the field. The influence between and investments in these point-like human objects are explained as energy exchanges (potential and kinetic), which can be described in terms of three different types of capital: financial (assets), human (the individual), and social (two or more humans in a network). This model is predicated on a field theoretical understanding of the world we live in. We use historical and contemporaneous examples of human activity and describe them in terms of the model. In Volume 2, we demonstrate how to apply the model. In Volume 3, we use experimental data to prove the reliability of the model. These three volumes will persistently challenge the reader's understanding of time, position and what it means to be part of an infinite field.
Listing 1 - 10 of 133 | << page >> |
Sort by
|