Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
Agriculture is certainly the most important food supplier while it globally accounts for more than 70% of water used and contributes significantly to water pollution. Irrigated agriculture is facing rising competition worldwide for access to reliable, low cost, and high-quality water resources. However, irrigation as the major tool and determinant of affecting agricultural productivity and environmental resources plays a critical role in food security and environment sustainability. Innovative irrigation technologies and practices may enhance agricultural water efficiency and production, in the meantime decrease the water demand and quality issues. I am very pleased to invite you to submit manuscripts in agricultural irrigation which assess current challenges and offer improvement approaches and opportunities for future irrigation.
semi-arid regions --- greenhouse gas emission --- model simulation --- spinach --- benchmarking --- leaf mineral composition --- available water capacity --- irrigated crops --- organic production --- site-specific irrigation --- infiltration depth --- pumping plants --- performance indicator --- treated wastewater irrigation --- precision agriculture --- evaluation of performance --- total yield --- row cover --- irrigation --- slope gradient --- farming data --- optimal irrigation time --- lettuce production --- life cycle assessment --- mulch --- monthly changes --- irrigation water use efficiency --- energy audit --- crop evapotranspiration --- irrigation management --- downy mildew --- biomass production --- water application rate --- tomato fruit yield --- temperature variations --- irrigation water regimes --- salinization --- net irrigation requirements --- center-pivot irrigation --- cover crop --- climate change adaptation --- deficit irrigation --- drip irrigation --- Mediterranean region --- principal component analysis --- global sensitivity analysis
Choose an application
- Water resources management should be assessed under climate change conditions, as historic data cannot replicate future climatic conditions. - Climate change impacts on water resources are bound to affect all water uses, i.e., irrigated agriculture, domestic and industrial water supply, hydropower generation, and environmental flow (of streams and rivers) and water level (of lakes). - Bottom-up approaches, i.e., the forcing of hydrologic simulation models with climate change models’ outputs, are the most common engineering practices and considered as climate-resilient water management approaches. - Hydrologic simulations forced by climate change scenarios derived from regional climate models (RCMs) can provide accurate assessments of the future water regime at basin scales. - Irrigated agriculture requires special attention as it is the principal water consumer and alterations of both precipitation and temperature patterns will directly affect agriculture yields and incomes. - Integrated water resources management (IWRM) requires multidisciplinary and interdisciplinary approaches, with climate change to be an emerging cornerstone in the IWRM concept.
Precipitation --- Tropical Rainfall Measurement Mission (TRMM) --- Multi-Satellite Precipitation Analysis (TMPA) --- Upper Indus Basin (UIB) --- Himalaya --- streamflow --- extreme rainfall --- watershed --- dynamics of saline lakes --- extremely changing points --- extreme weather --- temporal trend --- climate change --- salinization --- water resources management --- drinking water --- debris --- water balance --- climatic change --- dam capacity --- simulation of sediment transport --- Athabasca River --- climate projection --- hydrologic modelling --- peak-flow --- return period --- stationary analysis --- non-stationary analysis --- global --- temperature --- precipitation --- Net Irrigation Water Requirement --- maize --- hydrologic modeling --- reanalysis gridded datasets --- ERA-Interim --- Balkan Peninsula
Choose an application
This book was inspired by the Hydrology–H030 Session of the 2019 AGU (America Geophysical Union) Fall Meeting. In recent years, simulating potential future vulnerability and sustainability of water resources due to climate change are mainly focused on global and regional scale watersheds by using climate change scenarios. These scenarios may have low resolution and may not be accurate for local watersheds. This book addresses the impacts of climate change upon water quantity and quality at small scale watersheds. Emphases are on climate-induced water resource vulnerabilities (e.g., flood, drought, groundwater depletion, evapotranspiration, and water pollution) and methodologies (e.g., computer modeling, field measurement, and management practice) employed to mitigation and adapt climate change impacts on water resources. Application implications to local water resource management are also discussed in this book.
GCM --- bias correction methods --- hydrological simulation --- climate change --- IRES --- OM --- DOC --- POC --- ephemeral stream --- event sampling --- headwaters --- tailwater recovery ditch --- AnnAGNPS --- BMP --- asymmetric warming --- normalized difference vegetation index --- second-order partial correlation analysis --- day and nighttime warming --- diurnal temperature range --- cottonwood --- sap flux --- STELLA --- vapor pressure deficit --- water year type --- hydrological drought --- adaptive strategies --- Central Valley --- streamflow --- SWAT model --- CNRM-CM5 --- CESM1-BGC.1 --- HADGEM2-AO.1 --- Alabama River Basin --- GRACE --- GGDI --- drought --- wavelet coherence --- teleconnections --- water model --- energy model --- climate scenario --- Nile River Basin --- perception --- adaptation --- irrigation water quality --- agriculture --- smallholder farmers --- Ethiopia Rift Valley --- vulnerability assessment --- Indian Himalayas --- springs --- springshed management --- water security --- n/a
Choose an application
Since their discovery, multi-walled carbon nanotubes (MWCNTs) have received tremendous attention due to their unique electrical, optical, physical, chemical, and mechanical properties. Remarkable advances have been made in the synthesis, purification, structural characterization, functionalization, and application of MWCNTs. Their particular characteristics make them well suited for a plethora of applications in a number of fields, namely nanoelectronics, nanofluids, energy management, (electro)catalysis, materials science, construction of (bio)sensors based on different detection schemes, multifunctional nanoprobes for biomedical imaging, and sorbents for sample preparation or removal of contaminants from wastewater. They are also useful as anti-bacterial agents, drug delivery nanocarriers, etc. The current relevant application areas are countless. This Special Issue presents original research and review articles that address advances, trends, challenges, and future perspectives regarding synthetic routes, structural features, properties, behaviors, and industrial or scientific applications of MWCNTs in established and emerging areas.
graphene oxide --- n/a --- Multi-Walled Carbon Nanotube (MWCNT) --- elution --- gold nanoparticles --- MHD --- heck reaction --- drug delivery --- carbon-nanotubes --- water based nanofluid --- zeolitic imidazolate framework --- Ionic liquid --- electroanalysis --- curved stretching sheet --- multiwalled carbon nanotubes --- lubricating oil additives --- hydrophobic drugs --- agricultural irrigation water --- polarity --- cerium oxide --- adsorption --- electrical properties --- non-linear thermal radiation --- electrochemical properties --- nanomaterials --- radar absorbing materials --- chloride diffusion --- RAFT polymerization --- synthesis methods --- gold(III) --- mechanical properties --- dissolution rate --- carbon materials --- electrochemical sensors --- magnetic solid phase extraction --- silicone rubber --- Single-Walled Carbon Nanotube (SWCNT) --- Pd-CNT nanohybrids --- kinetics --- nonylphenol --- boundary layer --- Casson model --- sensing applications --- organochlorine pesticides --- composites --- multi-wall carbon nanotube (MWCNT) --- polymeric composites --- carbon nanotubes --- structural --- azide-alkyne click chemistry --- functionalized carbon nanotubes --- heat generation --- EMI shielding --- gold(I) --- cement mortars --- semi-homogeneous catalysis --- functionalized CNTs --- nanomedicine --- multi-walled carbon nanotubes --- numerical solution --- PMMA --- HAM --- complex permittivity --- thermal radiation --- stretching sheet
Choose an application
Irrigation is becoming an activity of precision, where combining information collected from various sources is necessary to optimally manage resources. New management strategies, such as big data techniques, sensors, artificial intelligence, unmanned aerial vehicles (UAV), and new technologies in general, are becoming more relevant every day. As such, modeling techniques, both at the water distribution network and the farm levels, will be essential to gather information from various sources and offer useful recommendations for decision-making processes. In this book, 10 high quality papers were selected that cover a wide range of issues that are relevant to the different aspects related to irrigation management: water source and distribution network, plot irrigation systems, and crop water management.
Calathea --- irrigation demands --- variable topography --- water need index (WNI) --- rotator spray sprinkler --- olive orchard --- evapotranspiration --- modified drag model --- center pivot system --- hydraulic model --- optimization --- energy consumption --- the stable carbon isotope technique --- pump-as-turbine --- irrigation DSS --- Stromanthe --- ballistic simulation --- water resources management --- weed algorithm --- low-pressure --- modelling --- decision support systems --- water depth --- payback period --- irrigation networks --- water productivity --- fertigation scheduling --- container-grown plants --- irrigation water allocation --- actual evapotranspiration (ETA) --- sugar beet --- precision irrigation --- combinatorial analysis --- lined irrigation open-canal --- calibration --- soil-water-plant-atmosphere models --- daily water requirements --- hydraulic modelling --- AquaCrop --- reclaimed water --- hydropower --- crop transpiration --- water-energy nexus --- variable speed --- summer maize --- ornamental foliage plants --- Aswan High Dam --- energy losses --- well --- drip irrigation --- statistical analysis --- unmeasured discharges estimation --- irrigation network
Choose an application
Water scarcity is a critical issue for agriculture, and, hence, efficient management and conservation practices for agricultural water use are essential for adapting to and mitigating the impacts of current and future discrepancy between water supplies and water demands. This Special Issue focuses on “Agricultural Water Conservation: Tools, Strategies, and Practices”, which aims to bring together a collection of recent cutting-edge research and advancements in agricultural water conservation. The Special Issue intends to give a broad overview focusing on on-farm water conservation practices, advanced irrigation tools and water technologies, and the best management practices and strategies for efficient water use in agriculture.
Research. --- Biology. --- Technology. --- Engineering. --- Agriculture. --- irrigation --- groundwater --- alluvial aquifer --- water conservation adoption --- row crops --- Mississippi Delta --- precision agriculture --- Lower Mississippi River Valley --- clogging --- drip irrigation --- emitter --- hydrocyclone --- digestate liquid fraction --- wastewater --- salinity --- environments --- AquaCrop model --- water productivity --- scenarios --- tolerant --- Colorado River Basin --- drought --- irrigation management strategy --- water deficit --- optimum water use --- forage --- BEARS --- bushland --- climate --- evapotranspiration --- groundwater management --- irrigation water management --- Ogallala aquifer region --- remote sensing --- lysimeter ET assessment --- water-use efficiency --- analytical formula --- efficient design --- application efficiency --- gravity irrigation --- solar MajiPump --- water and crop productivity --- small-scale irrigation --- conservation agriculture --- Ethiopia --- sensible and latent heat fluxes --- surface renewal method --- tea plantation --- eddy covariance --- squash --- partial root drying --- water use efficiency --- soil mulch --- growing seasons --- gas exchange --- fruit quality --- Asparagus officinalis L. --- cultivars --- spears yield --- sandy soil --- water requirements --- IWUE --- autonomous landscape irrigation --- Hargreaves and Samani evapotranspiration model --- water conservation --- smart controller --- n/a
Choose an application
The agricultural community is face with the challenge of increasing food production by more than 70% to meet demand from the global population increase by the mid-21st century. Sustainable food production involves the sustained availability of resources, such as water and energy, to agriculture. The key challenges to sustainable food production are population increase, increasing demands for food, climate change, climate variability, and decreasing per capita land and water resources. To discuss more details on (a) the challenges for sustainable food production and (b) mitigation options available, a Special Issue on “Water Management for Sustainable Food Production” was assembled. This Special Issue focused on issues such as irrigation using brackish water, virtual water trade, allocation of water resources, consequences of excess precipitation on crop yields, strategies to increase water productivity, rainwater harvesting, irrigation water management, deficit irrigation, fertilization, environmental and socio-economic impacts, and irrigation water quality. The articles in the Special Issue cover several water-related issues across the U.S., Asia, Middle East, Africa, and Pakistan concerning sustainable food production. The articles in this Special Issue highlight the substantial impacts on agricultural production, water availability, and water quality in the face of increasing demands for food and energy.
AquaCrop model --- capillary rise --- climate change --- rainfall variability --- supplemental irrigation --- crop growth --- lettuce --- AquaCrop --- water saving --- water productivity --- deficit irrigation --- nitrogen productivity --- fertigation --- drip irrigation --- low-discharge --- arid regions --- Africa --- food security --- system of rice intensification --- water conservation --- climate variability --- water use efficiency --- multi-crop production --- pressure irrigation systems --- water costs --- corn --- soybeans --- maize --- crop-water production function --- West Africa --- spatiotemporal rainfall variability --- tied ridges --- scattered plots --- pearl millet --- yield loss --- crop uptake --- food quality --- geogenic --- emerging contaminants --- nanomaterials --- lysimeter --- canola --- water table --- root distribution --- evapotranspiration --- sustainable irrigation --- bibliometric analysis --- innovation and technology --- unconventional water resources --- delayed transplanting --- seedling age --- seedling density --- wet season --- grain sorghum --- precipitation --- rainfed --- multiple linear regression --- crop yield --- principal component analysis --- water allocation --- WEAP model --- scenario --- Awash River Basin --- sustainability --- agriculture --- virtual water trade --- blue --- green --- arid region --- brackish water --- sub surface drip irrigation (SDI) --- salinity --- sodicity --- olives trees --- excess precipitation --- irrigation water quality --- virtual water --- brackish groundwater --- rainwater harvesting --- socio-economic impacts
Choose an application
This book focuses on the tools and methods used for tackling the complexity of the different hydrological and hydrogeological set-ups, the hydrodynamic patterns, the site specifications, and the wide variability of internal and external factors and/or processes on the catchment-scale level that impose the need for combined integrated approaches of robust methods. This Special Issue aims to provide successful applications or new insights on the stand-alone or joint considerations of groundwater resources assessment and characterization methods and explore new state-of-the-art methodological concepts in light of a rapidly changing environment.
drought --- precipitation --- SPI --- groundwater salinization --- karst --- seawater intrusion --- Soil and Water Assessment Tool --- SEAWAT model --- irrigation management --- groundwater --- climate change --- sea level rise --- nitrate --- leachate --- modelling --- validation --- state scale --- integrated water resources management --- coastal agricultural basin --- groundwater nitrate pollution --- hydrochemistry --- hydrodynamics --- environmental isotopes --- Tirnavos basin --- groundwater recharge --- groundwater sustainability --- hydrology models --- Modder River --- sustainability index --- GALDIT --- monthly vulnerability --- seawater intrusion (SWI) --- vulnerability assessment --- effective weight --- densely populated area --- freshwater–saltwater interactions --- multilayer coastal aquifer --- hydro-geochemistry --- Tevere River delta --- Ostia Antica archaeological park --- drinking and irrigation water scarcity --- groundwater potential mapping --- machine learning --- remote sensing --- GIS --- karstic mountainous aquifers --- Morocco --- hydrogeological properties --- natural groundwater fluctuations --- semi-arid zones --- depleting groundwater resources --- Guadalupe Valley Aquifer --- chromium --- ultramafic rocks --- springs --- water–rock interaction --- natural background levels --- aquifer --- intrinsic vulnerability --- RIVA method --- index-overlay method --- n/a --- freshwater-saltwater interactions --- water-rock interaction
Choose an application
This book comprises components associated with smart water which aims at the exploitation and building of more sustainable and technological water networks towards the water–energy nexus and system efficiency. The implementation of modeling frameworks for measuring the performance based on a set of relevant indicators and data applications and model interfaces provides better support for decisions towards greater sustainability and more flexible and safer solutions. The hydraulic, management, and structural models represent the most effective and viable way to predict the behavior of the water networks under a wide range of conditions of demand and system failures. The knowledge of reliable parameters is crucial to develop approach models and, therefore, positive decisions in real time to be implemented in smart water systems. On the other hand, the models of operation in real-time optimization allow us to extend decisions to smart water systems in order to improve the efficiency of the water network and ensure more reliable and flexible operations, maximizing cost, environmental, and social savings associated with losses or failures. The data obtained in real time instantly update the network model towards digital water models, showing the characteristic parameters of pumps, valves, pressures, and flows, as well as hours of operation towards the lowest operating costs, in order to meet the requirement objectives for an efficient system.
seismic reliability --- water distribution system --- optimal layout --- Anytown network --- water network expansion --- water network capacity --- intermittent water supply --- theoretical maximum flow --- system setting curve --- demand estimation --- Kalman filter --- node grouping --- genetic algorithm --- smart water --- water-energy nexus --- energy efficiency --- sustainable water management --- energy recovering --- design criteria --- structure analysis --- suspended pipelines --- finite element method (FEM) --- SWMM Toolkit --- sewer system --- design --- optimization --- micro-hydropower --- water supply networks --- energy potential --- tubular propeller turbine --- energy recovery --- urban flooding --- centralized reservoir --- decentralized reservoir --- cooperative operation --- most stringent water resources management --- initial provincial water rights --- dynamic projection pursuit --- energy saving --- Pump As Turbine (PAT) --- PAT and pump system (P& --- P) --- pumping --- water hammer --- air vessel sizing --- energy storage --- dynamic behavior --- CAES --- irrigation water networks --- renewable energy --- sustainability and efficiency --- hydropower solutions --- water management --- air-water --- air pocket --- air valve --- hydraulic model --- pipeline --- emptying --- water supply
Choose an application
Includes material on irrigation in Mexico, Somalia, Morocco, the Andes, Bali, Cape Verde, Iran, and Sri Lanka.
Eau
---
Approvisionnement agricole en eau
---
Eau d'irrigation
---
Irrigatie (waterhuishouding)
---
Wasserversorgung
---
Wasserrecht
---
Landwirtschaft
---
Bewässerungssystem
---
Water-supply, Agricultural
---
Water rights.
---
Irrigation water
---
48.34 irrigation, drainage.
---
Water rights
---
Droit
---
Congres.
---
Management.
---
Management
---
Tucson
Listing 1 - 10 of 13 | << page >> |
Sort by
|