Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

ULB (2)

ULiège (2)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2022 (1)

2019 (1)

Listing 1 - 2 of 2
Sort by

Book
Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics
Authors: ---
ISBN: 3039214101 3039214098 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of machine learning in mechanics is booming. Algorithms inspired by developments in the field of artificial intelligence today cover increasingly varied fields of application. This book illustrates recent results on coupling machine learning with computational mechanics, particularly for the construction of surrogate models or reduced order models. The articles contained in this compilation were presented at the EUROMECH Colloquium 597, « Reduced Order Modeling in Mechanics of Materials », held in Bad Herrenalb, Germany, from August 28th to August 31th 2018. In this book, Artificial Neural Networks are coupled to physics-based models. The tensor format of simulation data is exploited in surrogate models or for data pruning. Various reduced order models are proposed via machine learning strategies applied to simulation data. Since reduced order models have specific approximation errors, error estimators are also proposed in this book. The proposed numerical examples are very close to engineering problems. The reader would find this book to be a useful reference in identifying progress in machine learning and reduced order modeling for computational mechanics.

Keywords

supervised machine learning --- proper orthogonal decomposition (POD) --- PGD compression --- stabilization --- nonlinear reduced order model --- gappy POD --- symplectic model order reduction --- neural network --- snapshot proper orthogonal decomposition --- 3D reconstruction --- microstructure property linkage --- nonlinear material behaviour --- proper orthogonal decomposition --- reduced basis --- ECSW --- geometric nonlinearity --- POD --- model order reduction --- elasto-viscoplasticity --- sampling --- surrogate modeling --- model reduction --- enhanced POD --- archive --- modal analysis --- low-rank approximation --- computational homogenization --- artificial neural networks --- unsupervised machine learning --- large strain --- reduced-order model --- proper generalised decomposition (PGD) --- a priori enrichment --- elastoviscoplastic behavior --- error indicator --- computational homogenisation --- empirical cubature method --- nonlinear structural mechanics --- reduced integration domain --- model order reduction (MOR) --- structure preservation of symplecticity --- heterogeneous data --- reduced order modeling (ROM) --- parameter-dependent model --- data science --- Hencky strain --- dynamic extrapolation --- tensor-train decomposition --- hyper-reduction --- empirical cubature --- randomised SVD --- machine learning --- inverse problem plasticity --- proper symplectic decomposition (PSD) --- finite deformation --- Hamiltonian system --- DEIM --- GNAT


Book
Evolutionary equations : Picard's theorem for partial differential equations, and applications
Authors: --- ---
ISBN: 3030893979 3030893960 Year: 2022 Publisher: Cham Springer Nature

Loading...
Export citation

Choose an application

Bookmark

Abstract

This open access book provides a solution theory for time-dependent partial differential equations, which classically have not been accessible by a unified method. Instead of using sophisticated techniques and methods, the approach is elementary in the sense that only Hilbert space methods and some basic theory of complex analysis are required. Nevertheless, key properties of solutions can be recovered in an elegant manner. Moreover, the strength of this method is demonstrated by a large variety of examples, showing the applicability of the approach of evolutionary equations in various fields. Additionally, a quantitative theory for evolutionary equations is developed. The text is self-contained, providing an excellent source for a first study on evolutionary equations and a decent guide to the available literature on this subject, thus bridging the gap to state-of-the-art mathematical research.

Listing 1 - 2 of 2
Sort by