Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Complex systems with symmetry arise in many fields, at various length scales, including financial markets, social, transportation, telecommunication and power grid networks, world and country economies, ecosystems, molecular dynamics, immunology, living organisms, computational systems, and celestial and continuum mechanics. The emergence of new orders and structures in complex systems means symmetry breaking and transitions from unstable to stable states. Modeling complexity has attracted many researchers from different areas, dealing both with theoretical concepts and practical applications. This Special Issue fills the gap between the theory of symmetry-based dynamics and its application to model and analyze complex systems.
multi-agent system (MAS) --- reinforcement learning (RL) --- mobile robots --- function approximation --- Opportunistic complex social network --- cooperative --- neighbor node --- probability model --- social relationship --- adapted PageRank algorithm --- PageRank vector --- networks centrality --- multiplex networks --- biplex networks --- divided difference --- radius of convergence --- Kung–Traub method --- local convergence --- Lipschitz constant --- Banach space --- fractional calculus --- Caputo derivative --- generalized Fourier law --- Laplace transform --- Fourier transform --- Mittag–Leffler function --- non-Fourier heat conduction --- Mei symmetry --- conserved quantity --- adiabatic invariant --- quasi-fractional dynamical system --- non-standard Lagrangians --- complex systems --- symmetry-breaking --- bifurcation theory --- complex networks --- nonlinear dynamical systems
Choose an application
The problem of solving complex engineering problems has always been a major topic in all industrial fields, such as aerospace, civil and mechanical engineering. The use of numerical methods has increased exponentially in the last few years, due to modern computers in the field of structural mechanics. Moreover, a wide range of numerical methods have been presented in the literature for solving such problems. Structural mechanics problems are dealt with using partial differential systems of equations that might be solved by following the two main classes of methods: Domain-decomposition methods or the so-called finite element methods and mesh-free methods where no decomposition is carried out. Both methodologies discretize a partial differential system into a set of algebraic equations that can be easily solved by computer implementation. The aim of the present Special Issue is to present a collection of recent works on these themes and a comparison of the novel advancements of both worlds in structural mechanics applications.
direction field --- tensor line --- principal stress --- tailored fiber placement --- heat conduction --- finite elements --- space-time --- elastodynamics --- mesh adaptation --- non-circular deep tunnel --- complex variables --- conformal mapping --- elasticity --- numerical simulation --- numerical modeling --- joint static strength --- finite element method --- parametric investigation --- reinforced joint (collar and doubler plate) --- nonlocal elasticity theory --- Galerkin weighted residual FEM --- silicon carbide nanowire --- silver nanowire --- gold nanowire --- biostructure --- rostrum --- paddlefish --- Polyodon spathula --- maximum-flow/minimum-cut --- stress patterns --- finite element modelling --- laminated composite plates --- non-uniform mechanical properties --- panel method --- marine propeller --- noise --- FW-H equations --- experimental test --- continuation methods --- bifurcations --- limit points --- cohesive elements --- functionally graded materials --- porosity distributions --- first-order shear deformation theory --- shear correction factor --- higher-order shear deformation theory --- equivalent single-layer approach --- n/a
Choose an application
For the 250th birthday of Joseph Fourier, born in 1768 in Auxerre, France, this MDPI Special Issue will explore modern topics related to Fourier Analysis and Heat Equation. Modern developments of Fourier analysis during the 20th century have explored generalizations of Fourier and Fourier–Plancherel formula for non-commutative harmonic analysis, applied to locally-compact, non-Abelian groups. In parallel, the theory of coherent states and wavelets has been generalized over Lie groups. One should add the developments, over the last 30 years, of the applications of harmonic analysis to the description of the fascinating world of aperiodic structures in condensed matter physics. The notions of model sets, introduced by Y. Meyer, and of almost periodic functions, have revealed themselves to be extremely fruitful in this domain of natural sciences. The name of Joseph Fourier is also inseparable from the study of the mathematics of heat. Modern research on heat equations explores the extension of the classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. In parallel, in geometric mechanics, Jean-Marie Souriau interpreted the temperature vector of Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media, which presents some interesting properties. One last comment concerns the fundamental contributions of Fourier analysis to quantum physics: Quantum mechanics and quantum field theory. The content of this Special Issue will highlight papers exploring non-commutative Fourier harmonic analysis, spectral properties of aperiodic order, the hypoelliptic heat equation, and the relativistic heat equation in the context of Information Theory and Geometric Science of Information.
signal processing --- thermodynamics --- heat pulse experiments --- quantum mechanics --- variational formulation --- Wigner function --- nonholonomic constraints --- thermal expansion --- homogeneous spaces --- irreversible processes --- time-slicing --- affine group --- Fourier analysis --- non-equilibrium processes --- harmonic analysis on abstract space --- pseudo-temperature --- stochastic differential equations --- fourier transform --- Lie Groups --- higher order thermodynamics --- short-time propagators --- discrete thermodynamic systems --- metrics --- heat equation on manifolds and Lie Groups --- special functions --- poly-symplectic manifold --- non-Fourier heat conduction --- homogeneous manifold --- non-equivariant cohomology --- Souriau-Fisher metric --- Weyl quantization --- dynamical systems --- symplectization --- Weyl-Heisenberg group --- Guyer-Krumhansl equation --- rigged Hilbert spaces --- Lévy processes --- Born–Jordan quantization --- discrete multivariate sine transforms --- continuum thermodynamic systems --- interconnection --- rigid body motions --- covariant integral quantization --- cubature formulas --- Lie group machine learning --- nonequilibrium thermodynamics --- Van Vleck determinant --- Lie groups thermodynamics --- partial differential equations --- orthogonal polynomials
Choose an application
This book presents collective works published in the recent Special Issue (SI) entitled "Aero/Hydrodynamics and Symmetry". These works address the existence of symmetry and its breakdown in aero-/hydro-dynamics and their related applications. The presented problems are complex nonlinear, non-Newtonian fluid flow problems that are (in some cases) coupled with heat transfer, phase change, nanofluidic, and magnetohydrodynamics phenomena. The applications vary and range from polymer chain transfer in micro-channel to the evaluation of vertical axis wind turbines, as well as autonomous underwater hovering vehicles. Recent advances in numerical, theoretical, and experimental methodologies, as well as finding new physics, new methodological developments, and their limitations are presented within the scope of the current book. Among others, in the presented works, special attention is paid to validation and improving the accuracy of the presented methodologies. This book brings together a collection of inter-/multi-disciplinary works applied to many engineering applications in a coherent manner.
Savonius vertical axis wind turbine --- horizontal overlap ratio --- vertical overlap ratio --- torque coefficient --- power coefficient --- Advection–diffusion --- fractional derivative --- concentrated source --- integral transform --- Burgers’ fluid --- velocity field --- shear stress --- Laplace transform --- modified Bessel function --- Stehfest’s algorithm --- MATHCAD --- electroosmotic flow --- power law fluid --- nanoparticles --- MHD --- entropy generation --- convergence analysis --- residual error --- autonomous underwater vehicle (AUV) --- airborne-launched AUV --- autonomous underwater hovering vehicle (AUH) --- water entry impact force --- computational fluid dynamics (CFD) --- two-phase flow --- Autonomous Underwater Vehicle (AUV) --- Autonomous Underwater Hovering Vehicle (AUH) --- hydrodynamic interaction --- response amplitude operator (RAO) --- wave effects --- symmetric flying wing --- plasma flow control --- energy --- stall --- dimensionless frequency --- particle image velocimetry --- SA–NaAlg fluid --- porosity --- fractional model --- Atangana–Baleanu derivative --- large eddy simulation --- subgrid scale model --- diffuser --- dynamic one equation model --- Vreman model --- separation --- heat conduction --- non-fourier --- solution structure theorems --- superposition approach --- Buongiorno model --- unsteady flow --- nanoliquid --- special third-grade liquid --- non-linear thermal radiation --- magneto hydro-dynamics (MHD) --- dissipative particle dynamics (DPD) --- Hartmann number (Ha-value) --- harmony bond coefficient or spring constant (K)
Choose an application
Recently, energy development has received significant attention through the promising results of technology development, experimentation, computational modeling, and validation. However, it remains a persistent challenge to produce the needed energy while significantly reducing the environmental effects, such as the emission of greenhouse gases, which lead to climate change. Moreover, technological and economic limitations may also hinder energy development for sustainability. This book entitled Energy Development for Sustainability covers technologies, products, equipment, and devices as well as energy services based on software and data protected by patents and/or trademarks. This book will serve as a collection of the latest scientific and technological approaches to various energy development initiatives for sustainability encompassing novel sonocatalytic application and integrated algal and sludge-based wastewater treatment system, energy storage, sustainable building, gas absorption, organosolv pretreatment, energy usage and CO2 emission in transportation, coal regulation for energy, solar photovoltaic system, torrefaction for fuel production, energy management system, clean energy incubator, biofuels from microalgae, and the influence of COVID-19 on climate change. Overall, this book addresses researchers, advanced students, technical consultants, as well as decision-makers in industries and politics. This book contains comprehensive overview and in-depth technical research papers addressing recent progress in the area of energy development for sustainability. We hope the readers will enjoy this book.
multi-objective optimization --- bioenergy --- biomass --- microalgae --- sludge --- wastewater --- algae --- biofuel production --- environmental policy --- life cycle assessment --- clean energy incubator --- core competitiveness evaluation --- matter-element extension --- TOPSIS --- KPCA --- NSGA-II --- LSSVM --- smart grid --- time-of-use --- demand bidding program --- battery energy storage system --- direct search method --- sorghum distilled residue --- thermogravimetric analysis --- torrefaction kinetics --- biomass and bioenergy --- particle swarm optimization (PSO) --- biochar --- LMDI decomposition --- spatiotemporal analysis --- ASEAN --- climate change --- CO2 emissions --- light trapping --- zero-depth concentrator --- light reflection --- internal-cell spacing --- energy system --- coal regulation --- pollution abatement --- environmental benefits --- health benefits --- transport --- spatial LMDI --- emissions --- Philippines --- Google Maps --- transportation --- energy use --- modeling --- vehicle flow --- organosolv pretreatment --- delignification --- fractionation --- organic solvent --- degraded empty fruit bunch --- COVID-19 --- CO2 --- fossil fuel --- Malaysia --- metal–organic framework --- MIL-101 --- solvent free --- adsorption --- carbon dioxide --- air conditioner --- cooling load --- heat conduction --- residential building --- roof insulation --- roof tile color --- solar reflectance --- metal–air battery --- carbon particles --- biomass waste --- electro-catalyst --- g-C3N4 --- carbon composite --- coconut shell husk --- characteristic --- sonocatalytic degradation --- malachite green
Choose an application
Geothermal energy is the thermal energy generated and stored in the Earth's core, mantle, and crust. Geothermal technologies are used to generate electricity and to heat and cool buildings. To develop accurate models for heat and mass transfer applications involving fluid flow in geothermal applications or reservoir engineering and petroleum industries, a basic knowledge of the rheological and transport properties of the materials involved (drilling fluid, rock properties, etc.)—especially in high-temperature and high-pressure environments—are needed. This Special Issue considers all aspects of fluid flow and heat transfer in geothermal applications, including the ground heat exchanger, conduction and convection in porous media. The emphasis here is on mathematical and computational aspects of fluid flow in conventional and unconventional reservoirs, geothermal engineering, fluid flow, and heat transfer in drilling engineering and enhanced oil recovery (hydraulic fracturing, CO2 injection, etc.) applications.
karst carbonate reservoir --- fracture compressibility --- enhanced gas recovery --- cost of electricity (COE) --- microstructure --- permeability --- CO2 permeability --- ammonia --- shale oil --- process simulation --- aquifer support --- spatiotemporal characteristics --- semi-analytical solution --- injection orientation --- CO2 diffusion --- wellbore temperature --- fluid front kinetics --- nest of tubes --- supercritical CO2 --- multiple parallel fractures --- multifractal theory --- real-scale --- techno-economic model --- fractal --- inter-well connectivity --- apparent permeability --- heat transfer --- porous media --- multiple structural units (MSU) --- coupled heat conduction and advection --- diffusion --- bottom-hole pressure --- tight reservoir --- ventilation --- surface diffusion --- unsteady process --- underground coal gasification (UCG) --- dynamic crack tip --- mercury intrusion porosimetry --- energy conservation analysis --- methanol --- comprehensive heat transfer model --- pressure fluctuations --- production optimization --- numerical simulation --- percolation model --- rheology --- drilling --- AE energy --- pipeline network --- natural gas --- huff-‘n-puff --- cement --- viscosity --- mathematical modeling --- enhanced geothermal systems --- cement slurries --- yield stress --- non-Newtonian fluids --- capacitance-resistance model --- thixotropy --- conductivity --- enhanced oil recovery --- leakage and overflow --- geothermal --- coal and rock fracture --- impact pressure --- computational fluid dynamics (CFD) --- GSHP (ground source heat pump) --- pore size distribution --- Knudsen diffusion --- hydraulic fracturing --- efficient simulation --- constitutive relations --- electricity generation --- fractal theory --- pore structure --- complex fracture network --- sloshing --- cost-effective --- slippage effect --- dynamic hydraulic-fracturing experiments --- critical porosity --- fracture uncertainty --- carbon capture and utilization (CCU) --- tube bundle model --- continuity/momentum and energy equations coupled --- main gas pipeline --- Coal excavation --- longitudinal dispersion coefficient --- computational fluid dynamic (CFD) --- flowback --- fracture simulation --- highly viscous fluids --- carbon capture and storage (CCS) --- energy dissipation --- economics --- particles model --- variable viscosity --- multi-pressure system --- frequency conversion technology (FCT) --- three-dimensional numerical simulation --- tight oil reservoirs --- multiphase flow --- methane removal --- Navier-Stokes equations
Listing 1 - 6 of 6 |
Sort by
|