Narrow your search

Library

FARO (31)

KU Leuven (31)

LUCA School of Arts (31)

Odisee (31)

Thomas More Kempen (31)

Thomas More Mechelen (31)

UCLL (31)

VIVES (31)

Vlaams Parlement (31)

ULB (8)

More...

Resource type

book (31)


Language

English (31)


Year
From To Submit

2022 (9)

2021 (5)

2020 (9)

2019 (4)

2018 (1)

More...
Listing 1 - 10 of 31 << page
of 4
>>
Sort by

Book
Emerging Approaches for Typing, Detection, Characterization, and Traceback of Escherichia coli, 2nd Edition
Authors: --- ---
Year: 2018 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pathogenic Escherichia coli strains cause a large number of diseases in humans, including diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, urinary tract infections, and neonatal meningitis, while in animals they cause diseases such as calf scours and mastitis in cattle, post-weaning diarrhea and edema disease in pigs, and peritonitis and airsacculitis in chickens. The different E. coli pathotypes are characterized by the presence of specific sets of virulence-related genes. Therefore, it is not surprising that pathogenic E. coli constitutes a genetically heterogeneous family of bacteria, and they are continuing to evolve. Rapid and accurate molecular methods are critically needed to detect and trace pathogenic E. coli in food and animals. They are also needed for epidemiological investigations to enhance food safety, as well as animal and human health and to minimize the size and geographical extent of outbreaks. The serotype of E. coli strains has traditionally been determined using antisera raised against the >180 different O- (somatic) and 53 H- (flagellar) antigens. However, there are many problems associated with serotyping, including: it is labor-intensive and time consuming; cross reactivity of the antisera with different serogroups occurs; antisera are available only in specialized laboratories; and many strains are non-typeable. Molecular serotyping targeting O-group-specific genes within the E. coli O-antigen gene clusters and genes that are involved in encoding for the different flagellar types offers an improved approach for determining the E. coliO- and H-groups. Furthermore, molecular serotyping can be coupled with determination of specific sets of virulence genes carried by the strain offering the possibility to determine O-group, pathotype, and the pathogenic potential simultaneously. Sequencing of the O-antigen gene clusters of all of the known O-groups of E. coli is now complete, and the sequences have been deposited in the GenBank database. The sequence information has revealed that some E. coli serogroups have identical sequences while others have point mutations or insertion sequences and type as different serogroups in serological reactions. There are also a number of other ambiguities in serotyping that need to be resolved. Furthermore, new E. coli O-groups are being identified. Therefore, there is an essential need to resolve these issues and to revise the E. coli serotype nomenclature based on these findings. There are emerging technologies that can potentially be applied for molecular serotyping and detection and characterization of E. coli. On a related topic, the genome sequence of thousands of E. coli strains have been deposited in GenBank, and this information is revealing unique markers such as CRISPR (clustered regularly interspaced short palindromic repeats) and virulence gene markers that could be used to identify E. coli pathotypes. Whole genome sequencing now provides the opportunity to study the role of horizontal gene transfer in the evolution and emergence of pathogenic E. coli strains. Whole genome sequencing approaches are being investigated for genotyping and outbreak investigation for regulatory and public health needs; however, there is a need for establishing bioinformatics pipelines able to handle large amounts of data as we move toward the use of genetic approaches for non-culture-based detection and characterization of E. coli and for outbreak investigations.


Book
Emerging Approaches for Typing, Detection, Characterization, and Traceback of Escherichia coli
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pathogenic Escherichia coli strains cause a large number of diseases in humans, including diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, urinary tract infections, and neonatal meningitis, while in animals they cause diseases such as calf scours and mastitis in cattle, post-weaning diarrhea and edema disease in pigs, and peritonitis and airsacculitis in chickens. The different E. coli pathotypes are characterized by the presence of specific sets of virulence-related genes. Therefore, it is not surprising that pathogenic E. coli constitutes a genetically heterogeneous family of bacteria, and they are continuing to evolve. Rapid and accurate molecular methods are critically needed to detect and trace pathogenic E. coli in food and animals. They are also needed for epidemiological investigations to enhance food safety, as well as animal and human health and to minimize the size and geographical extent of outbreaks. The serotype of E. coli strains has traditionally been determined using antisera raised against the >180 different O- (somatic) and 53 H- (flagellar) antigens. However, there are many problems associated with serotyping, including: it is labor-intensive and time consuming; cross reactivity of the antisera with different serogroups occurs; antisera are available only in specialized laboratories; and many strains are non-typeable. Molecular serotyping targeting O-group-specific genes within the E. coli O-antigen gene clusters and genes that are involved in encoding for the different flagellar types offers an improved approach for determining the E. coli O- and H-groups. Furthermore, molecular serotyping can be coupled with determination of specific sets of virulence genes carried by the strain offering the possibility to determine O-group, pathotype, and the pathogenic potential simultaneously. Sequencing of the O-antigen gene clusters of all of the known O-groups of E. coli is now complete, and the sequences have been deposited in the GenBank database. The sequence information has revealed that some E. coli serogroups have identical sequences while others have point mutations or insertion sequences and type as different serogroups in serological reactions. There are also a number of other ambiguities in serotyping that need to be resolved. Furthermore, new E. coli O-groups are being identified. Therefore, there is an essential need to resolve these issues and to revise the E. coli serotype nomenclature based on these findings. There are emerging technologies that can potentially be applied for molecular serotyping and detection and characterization of E. coli. On a related topic, the genome sequence of thousands of E. coli strains have been deposited in GenBank, and this information is revealing unique markers such as CRISPR (clustered regularly interspaced short palindromic repeats) and virulence gene markers that could be used to identify E. coli pathotypes. Whole genome sequencing now provides the opportunity to study the role of horizontal gene transfer in the evolution and emergence of pathogenic E. coli strains. Whole genome sequencing approaches are being investigated for genotyping and outbreak investigation for regulatory and public health needs; however, there is a need for establishing bioinformatics pipelines able to handle large amounts of data as we move toward the use of genetic approaches for non-culture-based detection and characterization of E. coli and for outbreak investigations.


Book
The universe of Escherichia coli
Authors: ---
ISBN: 1838811532 1838811524 1838811540 Year: 2019 Publisher: IntechOpen

Loading...
Export citation

Choose an application

Bookmark

Abstract

The title of the book ""The Universe of Escherichia coli"" aims to present and emphasize the huge diversity of this bacterial species and our efforts to prevent the E. coli infections. As it is part of the gut microbiota, E. coli is a well-known commensal species, and probiotic E. coli strains are successfully used for improving host's health. Also many ""workhorse"" E. coli strain exist that are employed in laboratory and biotechnology settings. But certain E. coli strains can cause intestinal and also extraintestinal infections at many anatomical sites. Therefore many efforts are undertaken to prevent E. coli infections, among them food safety, vaccines, but also new antimicrobial agents are searched for.


Book
Shiga toxin-producing Escherichia coli in human, cattle and foods : strategies for detection and control
Authors: --- ---
ISBN: 9782889192939 Year: 2014 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen associated with both outbreaks and sporadic cases of human disease, ranging from uncomplicated diarrhoea to haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). STEC affects children, elderly and immuno-compromised patients. STEC is capable of producing Shiga toxin type 1 (Stx1), type 2 (Stx2) or both, encoded by stx1 and stx2 genes, respectively. These strains are likely to produce putative accessory virulence factors such as intimin (encoded by eae), an enterohaemolysin (EhxA) and an autoagglutinating protein commonly associated with eae-negative strains (Saa), both encoded by an enterohaemorrhagic plasmid. Several studies have confirmed that cattle are the principal reservoir of STEC (O157 and non-O157:H7 serotypes) and many of these serotypes have been involved in HUS and HC outbreaks in other countries. Transmission of STEC to humans occurs through the consumption of undercooked meat, vegetables and water contaminated by faeces of carriers and by person-to-person contact. Diagnostic methods have evolved to avoid selective diagnostics, currently using molecular techniques for typing and subtyping of strains. Control is still a challenge, although there are animal vaccines directed against the serotype O157:H7.


Book
Antimicrobial Resistance As a Global Public Health Problem: How Can We Address It?

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Antimicrobials and Antimicrobial Resistance in the Environment
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Today, the food and water that we encounter in any part of the world could contain antibiotic residues and/or antibiotic-resistant bacteria. This book presents research evidence for this and also a potential way to mitigate the problem. Although not presented in this book, it is likely that this situation exists for all other types of antimicrobial agents as well, including antivirals, antifungals, and antiprotozoal agents. The presence of antibiotic residues and/or antibiotic-resistant bacteria contributes to the generation and propagation of resistance in disease-causing pathogens in humans and animals. Therefore, the medicines that we use to treat and/or prevent infections will not work as expected in many cases. It is estimated that if we do not contain antimicrobial resistance urgently, by 2050, up to 10 million people will die due to bacterial infectious diseases, such as pneumonia, skin infections, urinary tract infections, etc., which were once easily treatable. However, this book presents a system that can eliminate resistant bacteria and antibiotics from the environment, with the potential to work on other environmental microbes and antimicrobials. This book opens pathways for academics and scientists to do further research on antimicrobials and antimicrobial-resistant bacteria in various environmental areas and also presents evidence for policymakers to take further action and make the general public aware of the current situation in this context.

Keywords

antibiotic resistance --- community --- environment --- India --- coliforms --- commensal --- antibiotic resistance genes --- blaCTX-M --- blaTEM --- qepA --- hospital wastewater --- core-shell --- disinfection --- Escherichia coli --- nanoparticles --- pathogens --- silver --- solar-photocatalysis --- Staphylococcus aureus --- water --- zinc oxide --- S. aureus --- beaches --- multiple-antibiotic resistance --- ramA --- efflux pump --- multilocus sequence typing --- surface water --- antibiotics --- pakchoi --- endophytic bacteria --- antibiotic-resistant genes --- hydroponic cultivation --- Campylobacter --- poultry --- antibiotic susceptibility --- Rep-PCR --- cdt toxin --- Acinetobacter --- JDS3 --- river --- carbapenemases --- antimicrobial resistance --- genotypes --- non-typhoidal Salmonella --- genes --- integrons --- subtyping --- ESBL --- MRSA --- VRE --- sewage sludge --- PER-1 --- pathogenic E. coli --- harvested rainwater --- public health --- Sub-Saharan Africa --- alternative water source --- farmer --- veterinary antibiotics use --- knowledge --- behavior probability model --- China --- antibiotics residue --- food animals --- bacteria --- Nigeria --- E. coli --- antibiotic-resistance gene --- MARI --- MARP --- multidrug resistance --- flooring design --- Turkey --- antibacterial resistance --- enrofloxacin --- commensal E. coli --- ESBL-producing E. coli --- β-lactamase genes --- insertion sequences --- antibiotic residues --- aquatic environment --- ciprofloxacin --- Fe-doped ZnO nanoparticles --- photocatalysis --- sunlight --- ceragenin --- multidrug-resistant bacteria --- biofilm --- antimicrobial peptides --- colistin --- n/a


Book
Cell-Free Synthetic Biology
Author:
ISBN: 3039280236 3039280228 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cell-free synthetic biology is in the spotlight as a powerful and rapid approach to characterize and engineer natural biological systems. The open nature of cell-free platforms brings an unprecedented level of control and freedom for design compared to in vivo systems. This versatile engineering toolkit is used for debugging biological networks, constructing artificial cells, screening protein library, prototyping genetic circuits, developing new drugs, producing metabolites, and synthesizing complex proteins including therapeutic proteins, toxic proteins, and novel proteins containing non-standard (unnatural) amino acids. The book consists of a series of reviews, protocols, benchmarks, and research articles describing the current development and applications of cell-free synthetic biology in diverse areas.


Book
Housing Environment and Farm Animals' Well-Being
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint contains articles from the Special Issue of Animals “Housing Environment and Farm Animals' Well-Being”, including original research, review, and communication related to livestock and poultry environmental management, air quality control, emissions mitigation, and assessment of animal health and well-being.


Book
Cyanobacteria : the green E. coli
Authors: --- ---
ISBN: 9782889198122 Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

As the world struggles to reduce its dependence on fossil fuels and curb greenhouse gas emissions, industrial biotechnology is also ‘going green.’ Escherichia coli has long been used as a model Gram-negative bacterium, not only for fundamental research, but also for industrial applications. Recently, however, cyanobacteria have emerged as candidate chassis for the production of commodity fuels and chemicals, utilizing CO2 and sunlight as the main nutrient requirements. In addition to their potential for reducing greenhouse gas emissions and lowering production costs, cyanobacteria have naturally efficient pathways for the production metabolites such as carotenoids, which are of importance in the nutraceutical industry. The unique metabolic and regulatory pathways present in cyanobacteria present new challenges for metabolic engineers and synthetic biologists. Moreover, their requirement for light and the dynamic regulatory mechanisms of the diurnal cycle further complicate the development and application of cyanobacteria for industrial applications. Consequently, significant advancements in cyanobacterial engineering and strain development are necessary for the development of a ‘green E. coli’. This Research Topic will focus on cyanobacteria as organisms of emerging industrial relevance, including research focused on the development of genetic tools for cyanobacteria, the investigation of new cyanobacterial strains, the construction of novel cyanobacterial strains via genetic engineering, the application of ‘omics’ tools to advance the understanding of engineered cyanobacteria, and the development of computational models for cyanobacterial strain development.


Book
Carcass and Meat Quality in Ruminants
Authors: ---
ISBN: 3036559817 3036559825 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Dear Colleagues, Ruminant production systems are very important in many areas of the world and a key aspect of the economy and culture. Food quality is a complex term that includes, in addition to safety, such intrinsic characteristics as appearance, color, texture, and flavor, which are modified by both pre- and post-mortem factors. For this Special Issue, we included studies on any of these factors or preservation methods for improving the quality and shelf-life of meat. We also collected manuscripts on carcass development, quality, and valorization. We are interested in applied research and the interaction between pre- and post-mortem factors, e.g., nutrition and preservation methods for improving the quality and conservation of a carcass and meat, and methods for assessing carcass quality (ultrasound, image analysis, etc.). However, manuscripts related to the extrinsic characteristics (origin, quality labels, price, etc.) of a carcass or meat do not fall into the scope of this Special Issue.

Listing 1 - 10 of 31 << page
of 4
>>
Sort by