Listing 1 - 3 of 3 |
Sort by
|
Choose an application
"EPDF and EPUB available Open Access under CC-BY-NC-ND licence. Groups most severely affected by COVID-19 have tended to be those marginalised before the pandemic and are now being largely ignored in developing responses to it.This two-volume set of Rapid Responses explores the urgent need to put co-production and participatory approaches at the heart of responses to the pandemic and demonstrates how policymakers, health and social care practitioners, patients, service users, carers and public contributors can make this happen.The second volume focuses on methods and means of co-producing during a pandemic. It explores a variety of case studies from across the global North and South and addresses the practical considerations of co-producing knowledge both now - at a distance - and in the future when the pandemic is over."
Équipes virtuelles. --- Coauteurs. --- COVID-19 Pandemic, 2020 --- -Virtual work teams. --- -Authorship --- Social aspects. --- Collaboration. --- Coproduction; COVID-19; Health care; Marginalised voices; Participatory research; Research methods; Research practices; Social care; Social justice; Social research --- COVID-19 Pandemic, 2020-2023 --- Virtual work teams.
Choose an application
In der vorliegenden Arbeit wird die Anregungs/Abfrage-Photoelektronenspektroskopie auf die Untersuchung elektronischer Dynamik in massenselektierten Molekülionen unter Hochvakuum-Bedingungen angewendet, wodurch die Beobachtung intramolekularer elektronischer Relaxation unter Ausschluss jeglicher Wechselwirkung der untersuchten Teilchen zur umgebenden Matrix möglich ist.
Dianion --- Dynamik --- Gasphase --- Zeitauflösung --- Photoelektronenspektroskopie --- Phthalocyanin --- Fulleren --- Ab-initio-Rechnung
Choose an application
With the increasing global usage of water and the continuous addition of contaminants to water sources, new challenges have arisen that are associated with the abatement of organic pollutants, particularly those that are refractory to conventional water and wastewater treatment technologies. Advanced oxidation processes (AOPs) present a competitive alternative to promote the oxidation of organic contaminants by strong oxidative radicals generated from oxygen, ozone, wet peroxide, and UV radiation. The use of catalysts not only improves efficiency but may present remarkable cost advantages for practical applications of AOPs in the abatement of several pollutants. In this Special Issue of Catalysts, we invite authors to submit original research papers focused on the synthesis and characterization of novel heterogeneous catalysts and their uses in advanced oxidation processes for the removal of organic pollutants from aqueous solutions.
CdS --- Bi2MoO6 microspheres --- antibiotic removal --- charge separation --- visible-light-driven --- carbon xerogel --- carbon nanotubes --- activated carbon --- adsorption --- catalytic wet peroxidation --- heterogeneous Fenton’s oxidation --- p-nitrophenol --- magnetic materials --- chemical vapour deposition --- photocatalytic ozonation --- organic pollutants --- advanced oxidation process --- wastewater treatment --- contaminants of emerging concern --- pharmaceuticals --- environmental catalysis --- biochar --- iron mineral --- heterogeneous catalysts --- antibiotic --- advanced oxidation processes --- water treatment --- Fenton reactions --- LCA --- environmental impact --- Fenton --- photocatalysis --- visible light --- SBA15 --- magnetite --- graphene --- tin oxide --- antimony doped tin oxide --- electrochemical oxidation --- atomic layer deposition --- TiO2-SiO2 --- immobilized photocatalyst --- methylene blue adsorption --- metal-free carbon catalysts --- N, S-co-doping --- catalytic wet air oxidation --- n/a --- heterogeneous Fenton's oxidation
Listing 1 - 3 of 3 |
Sort by
|