Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Available for the first time in English, this classic text by Jun Kondo describes the Kondo effect thoroughly and intuitively. Its clear and concise treatment makes this book of interest to graduate students and researchers in condensed matter physics. The first half of the book describes the rudiments of the theory of metals at a level that is accessible for undergraduate students. The second half discusses key developments in the Kondo problem, covering topics including magnetic impurities in metals, the resistance minimum phenomenon, infrared divergence in metals and scaling theory, including Wilson's renormalization group treatment and the exact solution by the Bethe ansatz. A new chapter has been added covering advances made since the Japanese edition was published, such as the quantum dot and heavy fermion systems.
Dilute alloys. --- Magnetic alloys. --- Kondo effect. --- Free electron theory of metals. --- Energy-band theory of solids --- Metals --- Electric resistance --- Magnetic materials --- Solids --- Alloys --- Electric properties
Choose an application
Topological insulators. --- Kondo effect. --- Fermions. --- Fermi-Dirac particles --- Particles (Nuclear physics) --- Quantum statistics --- Interacting boson-fermion models --- Leptons (Nuclear physics) --- Electric resistance --- Magnetic materials --- Solids --- Insulators, Topological --- Electric insulators and insulation --- Electronic apparatus and appliances --- Electric properties --- Materials
Choose an application
Mesoscopic physics deals with systems larger than single atoms but small enough to retain their quantum properties. The possibility to create and manipulate conductors of the nanometer scale has given birth to a set of phenomena that have revolutionized physics: quantum Hall effects, persistent currents, weak localization, Coulomb blockade, etc. This Special Issue tackles the latest developments in the field. Contributors discuss time-dependent transport, quantum pumping, nanoscale heat engines and motors, molecular junctions, electron–electron correlations in confined systems, quantum thermo-electrics and current fluctuations. The works included herein represent an up-to-date account of exciting research with a broad impact in both fundamental and applied topics.
quantum transport --- quantum interference --- shot noise --- persistent current --- mesoscale and nanoscale physics --- Complementary Metal Oxide Semiconductor (CMOS) technology --- electron quantum optics --- photo-assisted noise --- charge and heat fluctuations --- time-dependent transport --- electron–photon coupling --- open quantum systems --- phonon transport --- nanostructured materials --- green’s functions --- density-functional tight binding --- Landauer approach, time-dependent transport --- graphene nanoribbons --- nonequilibrium Green’s function --- electronic transport --- thermal transport --- strongly correlated systems --- Landauer-Büttiker formalism --- Boltzmann transport equation --- time-dependent density functional theory --- electron–phonon coupling --- molecular junctions --- thermoelectric properties --- electron–vibration interactions --- electron–electron interactions --- thermoelectricity --- heat engines --- mesoscopic physics --- fluctuations --- thermodynamic uncertainty relations --- quantum thermodynamics --- steady-state dynamics --- nonlinear transport --- adiabatic quantum motors --- adiabatic quantum pumps --- quantum heat engines --- quantum refrigerators --- transport through quantum dots --- spin pump --- spin-orbit interaction --- quantum adiabatic pump --- interferometer --- geometric phase --- nonadiabaticity --- quantum heat pumping --- spin pumping --- relaxation --- time evolution --- quantum information --- entropy production --- Renyi entropy --- superconducting proximity effect --- Kondo effect --- spin polarization --- Anreev reflection --- conditional states --- conditional wavefunction --- Markovian and Non-Markovian dynamics --- stochastic Schrödinger equation --- quantum electron transport --- quantum dots --- fluctuation–dissipation theorem --- Onsager relations --- dynamics of strongly correlated quantum systems --- quantum capacitor --- local fermi liquids --- kondo effect --- coulomb blockade --- mesoscopic systems --- nanophysics --- quantum noise --- quantum pumping --- thermoelectrics --- heat transport
Choose an application
"Spin glasses are disordered magnetic systems that have led to the development of mathematical tools with an array of real-world applications, from airline scheduling to neural networks. Spin Glasses and Complexity offers the most concise, engaging, and accessible introduction to the subject, fully explaining what spin glasses are, why they are important, and how they are opening up new ways of thinking about complexity. This one-of-a-kind guide to spin glasses begins by explaining the fundamentals of order and symmetry in condensed matter physics and how spin glasses fit into--and modify--this framework. It then explores how spin-glass concepts and ideas have found applications in areas as diverse as computational complexity, biological and artificial neural networks, protein folding, immune response maturation, combinatorial optimization, and social network modeling. Providing an essential overview of the history, science, and growing significance of this exciting field, Spin Glasses and Complexity also features a forward-looking discussion of what spin glasses may teach us in the future about complex systems. This is a must-have book for students and practitioners in the natural and social sciences, with new material even for the experts"--
Computational complexity. --- Spin glasses. --- Glasses, Magnetic --- Glasses, Spin --- Magnetic glasses --- Complexity, Computational --- 530.412 --- Magnetic alloys --- Nuclear spin --- Solid state physics --- Electronic data processing --- Machine theory --- EdwardsЁnderson Hamiltonian. --- EdwardsЁnderson model. --- Hamiltonian. --- Herb Simon. --- Kondo effect. --- NK model. --- Phil Anderson. --- SherringtonЋirkpatrick model. --- Warren Weaver. --- antiferromagnetism. --- broken symmetry. --- combinatorial optimization. --- complex systems. --- complexity studies. --- complexity. --- computational complexity. --- computer science. --- condensed matter physics. --- condensed matter. --- dimension. --- dimensionality. --- dynamical behavior. --- ferromagnetism. --- ground state. --- immune response maturation. --- invariance. --- magnetic alloys. --- magnetic materials. --- magnetic systems. --- mathematicians. --- mean field theory. --- neural networks. --- nonequilibrium. --- order parameter. --- order. --- ordinary glasses. --- paramagnetism. --- phase transition. --- phase transitions. --- physics. --- prebiotic evolution. --- protein conformational dynamics. --- protein conformational folding. --- protein folding. --- quenched disorder. --- replica symmetry breaking. --- social network modeling. --- solid state magnetism. --- spin glass science. --- spin glasses. --- spin. --- spinгpin interaction. --- symmetry. --- thermodynamic equilibrium. --- thermodynamics.
Choose an application
With this book, we wish to honor the lifework of K. Alex Müller and present him with this book on the occasion of his 94th birthday. We are convinced that he will very much enjoy reading it. We would like to thank all contributors to this book, who addressed topics complementary and related to his work. The articles of the book represent the efforts in solid state physics – spanning more than 60 years – which have been groundbreaking in scientific and applied sciences. Many of the current hot topics are derived from this earlier work which has pioneered the way toward new experimental tools and/or refined techniques. From this point of view, the book presents, on one hand, a historical review and, on the other hand, a directory of possible future research.
ferroelastic --- WO3 --- polarons --- polaronic superconductivity --- transition metal dichalcogenides --- magnetic semiconductor spintronics --- n/a --- transition metal oxides --- lattice–spin–charge landscapes --- elasticity --- superconductivity --- cuprates --- magnetic penetration depth --- order parameter --- superconducting gap structure --- Kondo effect --- spin relaxation rate --- magnetic resonance --- strontium titanate --- quantum paraelectricity --- quantum fluctuations --- ferroelectricity --- isotope exchange --- external stress --- polar metal --- phase coexistence --- magnetoelectric multiglass --- Electron Paramagnetic Resonance (EPR) --- ENDOR --- Jahn-Teller --- color centers --- 3d impurities --- perovskite --- SrTiO3 --- 18O --- isotope substitution --- SrTiO3/LaAlO3 --- interface --- heterostructure --- tungsten oxide --- phase separation --- cuprate superconductors --- electronic correlations --- NMR --- pseudogap --- perovskite crystals --- Pseudo-Jahn-Teller effect --- multiferroicity --- permittivity --- flexoelectricity --- polar nanoregions --- orientational polarization --- LSCO --- anti-Jahn-Teller effect --- first-principles calculation --- Kamimura-Suwa model --- spin-polarized band --- Hund’s coupling spin-triplet and spin-singlet multiplets --- high-temperature superconductivity --- correlated Femi liquid --- charge density wave --- fluctuation --- strange metal --- coherence length --- granular superconductivity --- Mott transition --- BCS–BEC cross-over --- electron-phonon interaction --- topological insulator --- topological materials --- transition metal dichalcogenide --- helium atom scattering --- perovskite oxides --- phase transitions --- high-temperature cuprate superconductors --- lattice-spin-charge landscapes --- Hund's coupling spin-triplet and spin-singlet multiplets --- BCS-BEC cross-over
Listing 1 - 5 of 5 |
Sort by
|