Narrow your search
Listing 1 - 10 of 32 << page
of 4
>>
Sort by

Book
Configurable Software Performance Completions through Higher-Order Model Transformations
Author:
ISBN: 1000033385 3866449909 Year: 2013 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Chillies is a novel approach for variable model transformations closing the gap between abstract architecture models, used for performance prediction, and required low-level details. We enable variability of transformations using chain of generators based on the Higher-Order Transformation (HOT). HOTs target different goals, such as template instantiation or transformation composition. In addition, we discuss state-dependent behavior in prediction models and quality of model transformations.


Book
Manual Skills, Handedness, and the Organization of Language in the Brain
Authors: --- ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Periodical
Journal of Creativity
Author:
ISSN: 27133745 Year: 2021 Publisher: [London] Elsevier Ltd.

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
The many and the one : a philosophical study of plural logic
Authors: ---
ISBN: 0191915467 0192509160 0198791526 9780198791522 Year: 2021 Publisher: Oxford : Oxford University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plural logic has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? The result is a more nuanced picture of plural logic's applications than has been given thus far.


Book
Applied Functional Analysis and Its Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Applied functional analysis has an extensive history. In the last century, this field has often been used in physical sciences, such as wave and heat phenomena. In recent decades, with the development of nonlinear functional analysis, this field has been used to model a variety of engineering, medical, and computer sciences. Two of the most significant issues in this area are modeling and optimization. Thus, we consider some recently published works on fixed point, variational inequalities, and optimization problems. These works could lead readers to obtain new novelties and familiarize them with some applications of this area.

Keywords

vector variational-like inequalities --- vector optimization problems --- limiting (p,r)-α-(η,θ)-invexity --- Lipschitz continuity --- Fan-KKM theorem --- set-valued optimization problems --- higher-order weak adjacent epiderivatives --- higher-order mond-weir type dual --- benson proper efficiency --- fractional calculus --- ψ-fractional integrals --- fractional differential equations --- contraction --- hybrid contractions --- volterra fractional integral equations --- fixed point --- inertial-like subgradient-like extragradient method with line-search process --- pseudomonotone variational inequality problem --- asymptotically nonexpansive mapping --- strictly pseudocontractive mapping --- sequentially weak continuity --- method with line-search process --- pseudomonotone variational inequality --- strictly pseudocontractive mappings --- common fixed point --- hyperspace --- informal open sets --- informal norms --- null set --- open balls --- modified implicit iterative methods with perturbed mapping --- pseudocontractive mapping --- strongly pseudocontractive mapping --- nonexpansive mapping --- weakly continuous duality mapping --- set optimization --- set relations --- nonlinear scalarizing functional --- algebraic interior --- vector closure --- conjugate gradient method --- steepest descent method --- hybrid projection --- shrinking projection --- inertial Mann --- strongly convergence --- strict pseudo-contraction --- variational inequality problem --- inclusion problem --- signal processing


Book
A generalization of Bohr-Mollerup's theorem for higher order convex functions
Authors: ---
ISBN: 3030950883 3030950875 Year: 2022 Publisher: Cham Springer Nature

Loading...
Export citation

Choose an application

Bookmark

Abstract

In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.


Book
Recent Advances in Theoretical and Computational Modeling of Composite Materials and Structures
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The advancement in manufacturing technology and scientific research has improved the development of enhanced composite materials with tailored properties depending on their design requirements in many engineering fields, as well as in thermal and energy management. Some representative examples of advanced materials in many smart applications and complex structures rely on laminated composites, functionally graded materials (FGMs), and carbon-based constituents, primarily carbon nanotubes (CNTs), and graphene sheets or nanoplatelets, because of their remarkable mechanical properties, electrical conductivity and high permeability. For such materials, experimental tests usually require a large economical effort because of the complex nature of each constituent, together with many environmental, geometrical and or mechanical uncertainties of non-conventional specimens. At the same time, the theoretical and/or computational approaches represent a valid alternative for designing complex manufacts with more flexibility. In such a context, the development of advanced theoretical and computational models for composite materials and structures is a subject of active research, as explored here for a large variety of structural members, involving the static, dynamic, buckling, and damage/fracturing problems at different scales.

Keywords

prestressed concrete cylinder pipe --- external prestressed steel strands --- theoretical study --- wire-breakage --- first-principles calculation --- Heusler compounds --- gapless half metals --- spin gapless semiconductor --- bi-directional functionally graded --- bolotin scheme --- dynamic stability --- elastic foundation --- porosity --- two-axis four-gimbal --- electro-optical pod --- dynamics modeling --- coarse–fine composite --- Carbon-fiber-reinforced plastics (CFRPs) --- fastener --- arc --- Joule heat --- finite element analysis (FEA) --- piezoelectric effect --- bimodular model --- functionally-graded materials --- cantilever --- vibration --- functional reinforcement --- graphene nanoplatelets --- higher-order shear deformable laminated beams --- nanocomposites --- nonlinear free vibration --- sandwich beams --- fractional calculus --- Riemann-Liouville fractional derivative --- viscoelasticity --- pipe flow --- fractional Maxwell model --- fractional Zener model --- fractional Burgers model --- Riemann–Liouville fractional derivative --- fractional Kelvin–Voigt model --- fractional Poynting–Thomson model --- curved sandwich nanobeams --- nonlocal strain gradient theory --- quasi-3D higher-order shear theory --- thermal-buckling --- FG-GPL --- GDQ --- heat transfer equation --- higher-order shear deformation theory --- buckling --- FE-GDQ --- functionally graded materials --- 3D elasticity --- 3D shell model --- steady-state hygro-elastic analysis --- Fick moisture diffusion equation --- moisture content profile --- layer-wise approach --- n/a --- coarse-fine composite --- fractional Kelvin-Voigt model --- fractional Poynting-Thomson model


Book
Iterative Methods for Solving Nonlinear Equations and Systems
Authors: --- ---
ISBN: 3039219413 3039219405 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.

Keywords

Lipschitz condition --- heston model --- rectangular matrices --- computational efficiency --- Hull–White --- order of convergence --- signal and image processing --- dynamics --- divided difference operator --- engineering applications --- smooth and nonsmooth operators --- Newton-HSS method --- higher order method --- Moore–Penrose --- asymptotic error constant --- multiple roots --- higher order --- efficiency index --- multiple-root finder --- computational efficiency index --- Potra–Pták method --- nonlinear equations --- system of nonlinear equations --- purely imaginary extraneous fixed point --- attractor basin --- point projection --- fixed point theorem --- convex constraints --- weight function --- radius of convergence --- Frédholm integral equation --- semi-local convergence --- nonlinear HSS-like method --- convexity --- accretive operators --- Newton-type methods --- multipoint iterations --- banach space --- Kantorovich hypothesis --- variational inequality problem --- Newton method --- semilocal convergence --- least square problem --- Fréchet derivative --- Newton’s method --- iterative process --- Newton-like method --- Banach space --- sixteenth-order optimal convergence --- nonlinear systems --- Chebyshev–Halley-type --- Jarratt method --- iteration scheme --- Newton’s iterative method --- basins of attraction --- drazin inverse --- option pricing --- higher order of convergence --- non-linear equation --- numerical experiment --- signal processing --- optimal methods --- rate of convergence --- n-dimensional Euclidean space --- non-differentiable operator --- projection method --- Newton’s second order method --- intersection --- planar algebraic curve --- Hilbert space --- conjugate gradient method --- sixteenth order convergence method --- Padé approximation --- optimal iterative methods --- error bound --- high order --- Fredholm integral equation --- global convergence --- iterative method --- integral equation --- ?-continuity condition --- systems of nonlinear equations --- generalized inverse --- local convergence --- iterative methods --- multi-valued quasi-nonexpasive mappings --- R-order --- finite difference (FD) --- nonlinear operator equation --- basin of attraction --- PDE --- King’s family --- Steffensen’s method --- nonlinear monotone equations --- Picard-HSS method --- nonlinear models --- the improved curvature circle algorithm --- split variational inclusion problem --- computational order of convergence --- with memory --- multipoint iterative methods --- Kung–Traub conjecture --- multiple zeros --- fourth order iterative methods --- parametric curve --- optimal order --- nonlinear equation


Book
The great debate : general ability and specific abilities in the prediction of important outcomes
Authors: ---
ISBN: 3039211684 3039211676 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

There are many different theories of intelligence. Although these theories differ in their nuances, nearly all agree that there are multiple cognitive abilities and that they differ in the breadth of content they are typically associated with. There is much less agreement about the relative importance of cognitive abilities of differing generality for predicting important real-world outcomes, such as educational achievement, career success, job performance, and health. Some investigators believe that narrower abilities hold little predictive power once general abilities have been accounted for. Other investigators contend that specific abilities are often as—or even more—effective in forecasting many practical variables as general abilities. These disagreements often turn on differences of theory and methodology that are both subtle and complex. The five cutting-edge contributions in this volume, both empirical and theoretical, advance the conversation in this vigorous, and highly important, scientific debate.


Book
Practical Applications of NMR to Solve Real-World Problems
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nuclear magnetic resonance spectroscopy (NMR) has developed from primarily a method of academic study into a recognized technology that has advanced measurement capabilities within many different industrial sectors. These sectors include areas such as national security, energy, forensics, life sciences, pharmaceuticals, etc. Despite this diversity, these applications have many shared technical challenges and regulatory burdens, yet interdisciplinary cross-talk is often limited. To facilitate the sharing of knowledge, this Special Issue presents technical articles from four different areas, including the oil industry, nanostructured systems and materials, metabolomics, and biologics. These areas use NMR or magnetic resonance imaging (MRI) technologies that range from low-field relaxometry to magnetic fields as high as 700 MHz. Each article represents a practical application of NMR. A few articles are focused on basic research concepts, which will likely have the cross-cutting effect of advancing multiple disciplinary areas.

Listing 1 - 10 of 32 << page
of 4
>>
Sort by