Listing 1 - 10 of 10 |
Sort by
|
Choose an application
During the last century, navigation systems have become ubiquitous and guide drivers, cyclists, and pedestrians towards their desired destinations. While operating worldwide, they rely on line-of-sight conditions towards satellites and are thus limited to outdoor areas. However, finding a gate within an airport, a ward within a hospital, or a university's auditorium also represent navigation problems. To provide navigation within such indoor environments, new approaches are required. This thesis examines pedestrian 3D indoor localization and navigation using commodity smartphones: A desirable target platform, always at hand and equipped with a multitude of sensors. The IMU (accelerometer, gyroscope, magnetometer) and barometer allow for pedestrian dead reckoning, that is, estimating relative location changes. Absolute whereabouts can be determined via Wi-Fi, an infrastructure present within most public buildings, or by using Bluetooth Low Energy Beacons as inexpensive supplement. The building's 3D floorplan not only enables navigation, but also increases accuracy by preventing impossible movements, and serves as a visual reference for the pedestrian. All aforementioned information is fused by recursive density estimation based on a particle filter. The conducted experiments cover both, theoretical backgrounds and real-world use-cases. All discussed approaches utilize the infrastructure found within most public buildings, are easy to set up, and maintain. Overall, this thesis results in an indoor localization and navigation system that can be easily deployed, without requiring any special hardware components.
Navigation. --- Navigation, Primitive --- Locomotion --- Orientation --- Nautical astronomy --- Naval art and science --- Pilots and pilotage --- Probabilistic Sensor Fusion --- Pedestrian Dead Reckoning --- Wi-Fi Location Estimation --- Indoor Floorplans --- 3D Movement Prediction
Choose an application
The emerging technology of very inexpensive inertial sensors is available for navigation as never before. The book lays the analytical foundation for understanding and implementing the navigation equations. It starts by demystifying the central theme of the frame rotation using such algorithms as the quaternions, the rotation vector and the Euler angles. After developing navigation equations, the book introduces the computational issues and discusses the physical aspects that are tied to implementing these equations. The book then explains alignment techniques.Introduction to Modern Navigation
Inertial navigation systems. --- Inertial navigation. --- Global Positioning System. --- Global Navigation Satellite System --- GNSS (Navigational system) --- GPS (Navigational system) --- Navigation Satellite Timing and Ranging Global Positioning System --- NAVSTAR GPS --- Artificial satellites in navigation --- Mobile geographic information systems --- Navigation, Inertial --- Dead reckoning (Navigation) --- Nautical instruments --- Navigation --- Inertial guidance --- Inertial guidance sensors --- Navigation systems, Inertial
Choose an application
This thesis develops next-generation multi-degree-of-freedom gyroscopes and inertial measurement units (IMU) using micro-electromechanical-systems (MEMS) technology. It covers both a comprehensive study of the physics of resonator gyroscopes and novel micro/nano-fabrication solutions to key performance limits in MEMS resonator gyroscopes. Firstly, theoretical and experimental studies of physical phenomena including mode localization, nonlinear behavior, and energy dissipation provide new insights into challenges like quadrature errors and flicker noise in resonator gyroscope systems. Secondly, advanced designs and micro/nano-fabrication methods developed in this work demonstrate valuable applications to a wide range of MEMS/NEMS devices. In particular, the HARPSS+ process platform established in this thesis features a novel slanted nano-gap transducer, which enabled the first wafer-level-packaged single-chip IMU prototype with co-fabricated high-frequency resonant triaxial gyroscopes and high-bandwidth triaxial micro-gravity accelerometers. This prototype demonstrates performance amongst the highest to date, with unmatched robustness and potential for flexible substrate integration and ultra-low-power operation. This thesis shows a path toward future low-power IMU-based applications including wearable inertial sensors, health informatics, and personal inertial navigation.
Engineering. --- Electronics. --- Vibration. --- Measurement Science and Instrumentation. --- Nanotechnology and Microengineering. --- Nanoscale Science and Technology. --- Electronics and Microelectronics, Instrumentation. --- Vibration, Dynamical Systems, Control. --- Cycles --- Mechanics --- Sound --- Electrical engineering --- Physical sciences --- Construction --- Industrial arts --- Technology --- Inertial navigation. --- Navigation, Inertial --- Dead reckoning (Navigation) --- Nautical instruments --- Navigation --- Physical measurements. --- Measurement . --- Nanotechnology. --- Nanoscale science. --- Nanoscience. --- Nanostructures. --- Microelectronics. --- Dynamical systems. --- Dynamics. --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Physics --- Statics --- Microminiature electronic equipment --- Microminiaturization (Electronics) --- Electronics --- Microtechnology --- Semiconductors --- Miniature electronic equipment --- Nanoscience --- Nano science --- Nanoscale science --- Nanosciences --- Science --- Molecular technology --- Nanoscale technology --- High technology --- Measuring --- Mensuration --- Metrology --- Physical measurements --- Measurements, Physical --- Mathematical physics --- Measurement
Choose an application
This book not only introduces the principles of INS, CNS and GNSS, the related filters and semi-physical simulation, but also systematically discusses the key technologies needed for integrated navigations of INS/GNSS, INS/CNS, and INS/CNS/GNSS, respectively. INS/CNS/GNSS integrated navigation technology has established itself as an effective tool for precise positioning navigation, which can make full use of the complementary characteristics of different navigation sub-systems and greatly improve the accuracy and reliability of the integrated navigation system. The book offers a valuable reference guide for graduate students, engineers and researchers in the fields of navigation and its control. Dr. Wei Quan, Dr. Jianli Li, Dr. Xiaolin Gong and Dr. Jiancheng Fang are all researchers at the Beijing University of Aeronautics and Astronautics.
Engineering. --- Aerospace Technology and Astronautics. --- Geographical Information Systems/Cartography. --- Simulation and Modeling. --- Electrical Engineering. --- Computer simulation. --- Geographical information systems. --- Astronautics. --- Computer engineering. --- Ingénierie --- Simulation par ordinateur --- Systèmes d'information --- Astronautique --- Ordinateurs --- Noms géographiques --- Conception et construction --- Mechanical Engineering --- Engineering & Applied Sciences --- Aeronautics Engineering & Astronautics --- Navigation (Aeronautics) --- Inertial navigation (Aeronautics) --- Artificial satellites in navigation. --- Navigation, Inertial (Aeronautics) --- Aerial navigation --- Aeronautical navigation --- Aeronautics --- Air navigation --- Avigation --- Navigation, Aerial --- Navigation --- Aerospace engineering. --- Electrical engineering. --- Aeronautical instruments --- Dead reckoning (Navigation) --- Computers --- Computer modeling --- Computer models --- Modeling, Computer --- Models, Computer --- Simulation, Computer --- Electromechanical analogies --- Mathematical models --- Simulation methods --- Model-integrated computing --- Geographical information systems --- GIS (Information systems) --- Information storage and retrieval systems --- Space sciences --- Astrodynamics --- Space flight --- Space vehicles --- Design and construction --- Geography --- Electric engineering --- Engineering --- Aeronautical engineering --- Astronautics
Choose an application
This book introduces typical inertial devices and inertial-based integrated navigation systems, gyro noise suppression, gyro temperature drift error modeling compensation, inertial-based integrated navigation systems under discontinuous observation conditions, and inertial-based brain integrated navigation systems. Integrated navigation is the result of the development of modern navigation theory and technology. The inertial navigation system has the advantages of strong autonomy, high short-term accuracy, all-day time, all weather, and so on. And it has been applied in most integrated navigation systems. Among them, the information processing of inertial-based integrated navigation system is the core technology. Due to the effect of the device mechanism and working environment, there are errors in the output information of the inertial-based integrated navigation system, including gyroscope noise, temperature drift, and discontinuous observations, which will seriously reduce the accuracy and robustness of the system. And the book helps readers to solve these problems. The intelligent information processing technology involved is equipped with simulation verification, which can be used as a reference for undergraduate, graduate, and Ph.D. students, and also scientific researchers or engineers engaged in navigation-related specialties.
Signal processing. --- Image processing. --- Speech processing systems. --- Electronics. --- Microelectronics. --- Wireless communication systems. --- Mobile communication systems. --- Transportation engineering. --- Traffic engineering. --- Signal, Image and Speech Processing. --- Electronics and Microelectronics, Instrumentation. --- Wireless and Mobile Communication. --- Transportation Technology and Traffic Engineering. --- Engineering, Traffic --- Road traffic --- Street traffic --- Traffic, City --- Traffic control --- Traffic regulation --- Urban traffic --- Highway engineering --- Transportation engineering --- Civil engineering --- Engineering --- Vehicles --- Vehicular communication systems --- Radio --- Wireless communication systems --- Communication systems, Wireless --- Wireless data communication systems --- Wireless information networks --- Wireless telecommunication systems --- Telecommunication systems --- Microminiature electronic equipment --- Microminiaturization (Electronics) --- Electronics --- Microtechnology --- Semiconductors --- Miniature electronic equipment --- Electrical engineering --- Physical sciences --- Computational linguistics --- Electronic systems --- Information theory --- Modulation theory --- Oral communication --- Speech --- Telecommunication --- Singing voice synthesizers --- Pictorial data processing --- Picture processing --- Processing, Image --- Imaging systems --- Optical data processing --- Processing, Signal --- Information measurement --- Signal theory (Telecommunication) --- Communication systems --- Inertial navigation --- Data processing. --- Navigation, Inertial --- Dead reckoning (Navigation) --- Nautical instruments --- Navigation
Choose an application
The recent development in wireless networks and devices has led to novel services that will utilize wireless communication on a new level. Much effort and resources have been dedicated to establishing new communication networks that will support machine-to-machine communication and the Internet of Things (IoT). In these systems, various smart and sensory devices are deployed and connected, enabling large amounts of data to be streamed. Smart services represent new trends in mobile services, i.e., a completely new spectrum of context-aware, personalized, and intelligent services and applications. A variety of existing services utilize information about the position of the user or mobile device. The position of mobile devices is often achieved using the Global Navigation Satellite System (GNSS) chips that are integrated into all modern mobile devices (smartphones). However, GNSS is not always a reliable source of position estimates due to multipath propagation and signal blockage. Moreover, integrating GNSS chips into all devices might have a negative impact on the battery life of future IoT applications. Therefore, alternative solutions to position estimation should be investigated and implemented in IoT applications. This Special Issue, “Smart Sensor Technologies for IoT” aims to report on some of the recent research efforts on this increasingly important topic. The twelve accepted papers in this issue cover various aspects of Smart Sensor Technologies for IoT.
Internet of Things (IoT) --- ReRoute --- Multicast Repair (M-REP) --- internet of things (IoT) --- Fast Reroute --- bit repair (B-REP) --- failure repair --- WSN --- MANET --- DRONET --- multilayered network model --- 5G --- IoT --- smart sensors --- smart sensor --- IoT system --- Velostat --- pressure sensor --- convolutional neural network --- data classification --- position detection --- magnetometer --- traffic --- vehicle --- classification --- measurement --- detection --- Internet of Things --- Bluetooth --- indoor tracking --- mobile localization --- optical sensors --- vibration sensing --- quality of service differentiation --- wireless optical networks --- free space optics --- multiwavelength laser --- optical code division multiple access (OCDMA) --- underwater wireless sensor network --- energy-efficient --- clustering --- depth-based routing --- mm-wave radars --- GNSS-RTK positioning --- wireless technology --- electromagnetic scanning --- point cloud --- localization --- IMU --- Wi-Fi --- positioning --- dead reckoning --- particle filter --- fingerprinting --- Wi-Fi sensing --- human activity recognition --- location-independent --- meta learning --- metric learning --- few-shot learning --- ACR --- H.264/AVC --- H.265/HEVC --- QoE --- subjective assessment --- n/a
Choose an application
Connected and automated vehicles (CAVs) are a transformative technology that is expected to change and improve the safety and efficiency of mobility. As the main functional components of CAVs, advanced sensing technologies and control algorithms, which gather environmental information, process data, and control vehicle motion, are of great importance. The development of novel sensing technologies for CAVs has become a hotspot in recent years. Thanks to improved sensing technologies, CAVs are able to interpret sensory information to further detect obstacles, localize their positions, navigate themselves, and interact with other surrounding vehicles in the dynamic environment. Furthermore, leveraging computer vision and other sensing methods, in-cabin humans’ body activities, facial emotions, and even mental states can also be recognized. Therefore, the aim of this Special Issue has been to gather contributions that illustrate the interest in the sensing and control of CAVs.
TROOP --- truck platooning --- path planning --- kalman filter --- V2V communication --- string stability --- off-tracking --- articulated cargo trucks --- kabsch algorithm --- potential field --- sigmoid curve --- autonomous vehicles --- connected and autonomous vehicles --- artificial neural networks --- end-to-end learning --- multi-task learning --- urban vehicle platooning --- simulation --- attention --- executive control --- simulated driving --- task-cuing experiment --- electroencephalogram --- fronto-parietal network --- object vehicle estimation --- radar accuracy --- data-driven --- radar latency --- weighted interpolation --- autonomous vehicle --- urban platooning --- vehicle-to-vehicle communication --- in-vehicle network --- analytic hierarchy architecture --- traffic scenes --- object detection --- multi-scale channel attention --- attention feature fusion --- collision warning system --- ultra-wideband --- dead reckoning --- time to collision --- vehicle dynamic parameters --- Unscented Kalman Filter --- multiple-model --- electric vehicle --- unified chassis control --- unsprung mass --- autonomous driving --- trajectory tracking --- real-time control --- model predictive control --- tyre blow-out --- yaw stability --- roll stability --- vehicle dynamics model --- n/a
Choose an application
Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods.
filter --- finite memory structure --- infinite memory structure --- smoother --- target tracking --- Indoor Positioning System --- WLAN --- C-Means --- K-Means --- Access Point Selection --- RSS-fingerprint --- smartphone --- pedestrian dead reckoning --- heading estimation --- autoregressive model --- adaptive Kalman filter --- indoor localization --- Wi-Fi received signal strength indicator (RSSI) --- semisupervised learning --- feature extraction --- mobile fingerprinting --- trajectory learning --- localization --- hybrid localization --- Bluetooth Low Energy --- extended kalman filter --- internet of things --- proximity sensors --- smartphone sensors --- pedestrian dead reckoning (PDR) --- Wi-Fi indoor positioning --- sensor fusion frameworks --- Kalman filter --- location fingerprinting --- trilateration --- received signal strength indication (RSSI) --- indoor positioning --- 5G system --- hybrid positioning --- geometric dilution of precision --- closed-form solution --- Cramer-Rao lower bound --- visually impaired (VI) --- computer vision --- deep learning --- multi-label convolutional support vector machine (M-CSVM) --- assistive technology --- visually impaired --- navigational system --- indoor navigation --- markers --- mobile robots --- wireless sensor network --- time of arrival (TOA) --- NLOS --- modified probabilistic data association (MPDA) --- indoor location recognition --- received signal strength (RSS) --- Wi-Fi fingerprint positioning --- deep neural network (DNN) --- optimization methods --- adaptive filter --- hidden Markov models (HMM) --- I/O detection --- GPS signal --- machine learning --- positioning applications. --- PDR --- geomagnetic positioning --- particle filter --- genetic algorithm --- Wi-Fi fine timing measurement --- NLOS identification --- Gaussian model --- carrier phase --- differential pseudolite system --- extended Kalman filter --- reliability --- integrity monitoring --- transparent obstacle recognition --- reflection noise --- laser range finder --- path planning --- mobile robot --- automated data acquisition --- remote sensing technologies --- automated progress reporting --- data fusion --- tracking resources --- bearing estimation --- azimuth estimation --- signal processing --- position estimation --- photodiode array --- indoor ranging algorithm --- channel state information --- received signal strength indicator --- VPR --- fusion navigation --- UWB --- multi-path detection --- NLOS and MP discrimination --- SVM --- random forest --- multilayer perceptron --- LOS --- DWM1000 --- fingerprinting --- smart buildings --- mobile devices --- indoor localization technologies --- model based techniques --- quality control
Choose an application
Heavenly Mathematics traces the rich history of spherical trigonometry, revealing how the cultures of classical Greece, medieval Islam, and the modern West used this forgotten art to chart the heavens and the Earth. Once at the heart of astronomy and ocean-going navigation for two millennia, the discipline was also a mainstay of mathematics education for centuries and taught widely until the 1950's. Glen Van Brummelen explores this exquisite branch of mathematics and its role in ancient astronomy, geography, and cartography; Islamic religious rituals; celestial navigation; polyhedra; stereographic projection; and more. He conveys the sheer beauty of spherical trigonometry, providing readers with a new appreciation of its elegant proofs and often surprising conclusions. Heavenly Mathematics is illustrated throughout with stunning historical images and informative drawings and diagrams. This unique compendium also features easy-to-use appendixes as well as exercises that originally appeared in textbooks from the eighteenth to the early twentieth centuries.
Spherical trigonometry. --- Trigonometry. --- Trig (Trigonometry) --- Geometry --- Mathematics --- Trigonometry, Spherical --- Trigonometry --- Abū 'l-Wafā. --- Abū Mahmūd al-Khujandī. --- Abū Nasr Mansūr ibn 'Alī ibn 'Irāq. --- Abū Sahl al-Kūhī. --- Albert Girard. --- B. M. Brown. --- Cesàro method. --- Christopher Columbus. --- Claudius Ptolemy. --- Earth. --- Elements. --- Georg Rheticus. --- Giuseppe Cesàro. --- Hipparchus of Rhodes. --- Islam. --- Islamic religious rituals. --- John Harrison. --- John Napier. --- Law of Cosines. --- Law of Sines. --- Leonhard Euler. --- Mathematical Collection. --- Mecca. --- Menelaus of Alexandria. --- Menelaus's Theorem. --- Moon. --- Napier's Rules. --- Opus palatinum. --- Planisphere. --- Ptolemy. --- Pythagorean Theorem. --- Rule of Four Quantities. --- Sphaerica. --- Sun. --- acute-angled triangle. --- angle. --- area. --- astrolabe. --- astronomical triangle. --- astronomy. --- cartography. --- celestial motion. --- celestial sphere. --- chronometer. --- classical Greece. --- dead reckoning. --- ecliptic. --- equatorial coordinates. --- geography. --- locality principle. --- logarithms. --- marteloio. --- mathematics. --- method of Saint Hilaire. --- navigation. --- oblique triangle. --- pentagramma mirificum. --- planar Law of Sines. --- plane trigonometry. --- planets. --- polygon. --- polyhedron. --- qibla. --- regular polyhedron. --- right-angled triangle. --- rising time. --- sphere. --- spherical Law of Sines. --- spherical astronomy. --- spherical geometry. --- spherical triangle. --- spherical trigonometry. --- star. --- stars. --- stereographic projection. --- table of sine. --- theorems. --- triangle. --- trigonometric table. --- trigonometry.
Choose an application
The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders.
inertial measurement units --- gait analysis --- biomedical signal processing --- pattern recognition --- step detection --- physiological signals --- Parkinson’s disease --- pathological gait --- turning analysis --- wearable sensors --- mobile gait analysis --- wearables --- inertial sensors --- traumatic brain injury --- dynamic balance --- gait disorders --- gait patterns --- head injury --- gait symmetry --- gait smoothness --- acceleration --- machine learning --- classification --- accelerometer --- GAITRite --- multi-regression normalization --- SVM --- random forest classifier --- balance --- gait --- transcranial direct current stimulation --- wearable electronics --- IMUs --- cueing --- posture --- rehabilitation --- cerebellar ataxia --- movement analysis --- personalized medicine --- stroke --- asymmetry --- trunk --- reliability --- validity --- aging --- reactive postural responses --- yaw perturbation --- kinematics --- postural stability --- dynamic posturography --- multiple sclerosis --- gait metrics --- test-retest reliability --- sampling frequency --- accelerometry --- autocorrelation --- harmonic ratio --- six-minute walk --- back school --- inertial sensor --- lower back pain --- stability --- timed up and go test --- gait assessment --- tri-axial accelerometer --- CV --- healthy subjects --- test-retest --- trajectory reconstruction --- stride segmentation --- dynamic time warping --- pedestrian dead-reckoning --- near falls --- loss of balance --- pre-impact fall detection --- activities of daily life --- bio-signals --- EEG --- EMG --- wireless sensors --- posturography --- Alzheimer’s disease --- vestibular syndrome --- diagnosis --- symptoms monitoring --- wearable --- home-monitoring
Listing 1 - 10 of 10 |
Sort by
|