Narrow your search

Library

KU Leuven (8)

LUCA School of Arts (8)

Odisee (8)

Thomas More Kempen (8)

Thomas More Mechelen (8)

UCLL (8)

VIVES (8)

FARO (7)

Vlaams Parlement (7)

UGent (1)

More...

Resource type

book (8)


Language

English (8)


Year
From To Submit

2022 (2)

2021 (4)

2020 (1)

2017 (1)

Listing 1 - 8 of 8
Sort by

Book
Expanded PTFE applications handbook : technology, manufacturing and applications
Author:
ISBN: 9781437778564 1437778569 9781437778557 1437778550 Year: 2017 Publisher: Amsterdam, [Netherlands] : Elsevier,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Coatings Imparting Multifunctional Properties to Materials
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Coatings are traditionally used to protect materials from corrosion and erosion and improve the equipment’s performance. At present, there are coatings that provide materials with new properties, for example, biocidal, hydrophobic and self-cleaning properties. A promising area of materials science is the development of "smart" coatings that simultaneously give materials several new properties. The coating propertiess are determined by the coatings’ material, the structure and the properties of the substrate surface, and the methods of forming the coatings. This book contains the results of the latest research on the formation of coatings that impart complexes of new properties to various materials.


Book
Surface Treatment of Textiles
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Textiles are commonly constituted of natural and synthetic fibers for normal applications. To impart functional or aesthetic effects on the textiles, the surface characteristics in the fiber play an important role. Therefore, surface treatment or modification is a possible way to provide value-added properties to textiles. The textile material/fiber surface can be treated or modified physically and/or chemically to achieve different desired effects. This book will provide an open forum to draw the attention of academic researchers and industrial experts to looking into different aspects of the surface treatment of textiles.


Book
Plasmas Processes Applied on Metals and Alloys
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on recent advances in plasma technology and its application to metals, alloys, and related materials. Surface modifications, material syntheses, cutting and surface coatings are performed using low-pressure plasma or atmospheric-pressure plasma. The contributions of this book include the discussion of a wide scope of plasma technologies applied to materials. Plasma is a versatile tool that can be applied in many types of material processing. New material processing applications of plasmas and new plasma technologies are being developed rapidly. We hope that this book can contribute new knowledge to the plasma material research society.


Book
Polymer Processing: Modeling and Correlations Finalized to Tailoring the Plastic Part Morphology and Properties
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The analysis of polymer processing operations is a wide and complex subject; during polymer processing, viscoelastic fluids are forced to deform into desired geometries using non-homogeneous velocity and temperature fields down to solidification. The objective of analysis is the identification of processing conditions, which are finalized in the optimization of product final properties, which, in turn, are determined by the final part morphology. Depending on the operating conditions, the properties of the final part can change more than one order of magnitude. Properties of interest include the mechanical, optical, barrier, permeability, and biodegradability, and any other property of practical relevance including the characteristics of the surfaces as its finishing and wettability, which are connected to one another. The scope of this Special Issue is to select progress in or reviews of the understanding/description of the phenomena involved along the chain of processing–morphology–properties. Along this virtual chain, modeling may be a useful approach, and within the objective of understanding fundamental aspects, it may also be relevant to compare selected characteristics of the process and the material with the characteristics of the resulting morphology and then with the properties of the final part. This approach suggests the title: “Polymer Processing: Modeling and Correlations Finalized to Tailoring the Plastic Part Morphology and Properties”.


Book
Selected Papers from 2018 IEEE International Conference on High Voltage Engineering (ICHVE 2018)
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The 2018 IEEE International Conference on High Voltage Engineering (ICHVE 2018) was held on 10–13 September 2018 in Athens, Greece, organized by the National Technical University of Athens, Greece, and endorsed by the IEEE Dielectrics and Electrical Insulation Society. This conference has attracted a great deal of attention from international researchers in the field of high voltage engineering. This conference provided not only an excellent platform to share knowledge and experiences on high voltage engineering, but also the opportunity to present the latest achievements and different emerging challenges in power engineering, including topics related to ultra-high voltage, smart grids, and new insulation materials and their dielectric properties.

Keywords

transformer oil --- multi frequency ultrasonic --- water content --- back propagation neural network --- genetic algorithm --- air capacitive sensors --- power system transients --- high-voltage measurements --- high-voltage monitoring --- mineral oil --- different particles --- accumulation behavior --- breakdown voltage --- DC voltage --- vacuum circuit breaker --- multi-break --- voltage distribution --- FEM --- stray capacitance --- grading capacitor --- partial discharge --- needle-plate model --- statistical rule --- discharge stage --- space charge --- silicone rubber --- degradation --- breakdown --- contact angle --- surface roughness --- FTIR --- ATH --- electrical tree --- XLPE --- polycyclic compound --- DC-impulse voltage --- temperature --- trap distribution --- creeping discharge --- AC voltage --- point-plane --- atmospheric gases --- flashover voltage --- polytetrafluoroethylene (PTFE) --- epoxy resin --- high voltage direct current --- polymeric insulation --- space charges --- nonlinear electric conductivity --- cable termination --- electric field --- high-voltage test --- stress relief cone --- grounding system --- substation --- lightning --- transmission system --- surge arrester performance --- bundle electric field --- corona --- HVDC transmission lines --- optimization --- radio interference --- electromagnetic transients --- nonuniform transmission line --- numerical Laplace transform --- time-dependent elements --- transmission line modeling --- nanofluids --- nanoparticles --- breakdown strength --- transformer oils --- permittivity --- conductivity --- combustion particle --- electric field distortion --- multi physical field --- finite element method --- particle movement characteristic --- insulator design --- dry band --- pollution --- offshore --- export cables --- inter-array cables --- damped AC voltage (DAC), after-laying cable testing --- on-site diagnosis --- condition assessment --- partial discharges --- and dissipation factor --- n/a


Book
Advances in Plasma Processes for Polymers
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Polymerized nanoparticles and nanofibers can be prepared using various processes, such as chemical synthesis, the electrochemical method, electrospinning, ultrasonic irradiation, hard and soft templates, seeding polymerization, interfacial polymerization, and plasma polymerization. Among these processes, plasma polymerization and aerosol-through-plasma (A-T-P) processes have versatile advantages, especially due to them being “dry", for the deposition of plasma polymer films and carbon-based materials with functional properties suitable for a wide range of applications, such as electronic and optical devices, protective coatings, and biomedical materials. Furthermore, it is well known that plasma polymers are highly cross-linked, pinhole free, branched, insoluble, and adhere well to most substrates. In order to synthesize the polymer films using the plasma processes, therefore, it is very important to increase the density and electron temperature of plasma during plasma polymerization.

Keywords

polytetrafluoroethylene --- fluorine depletion --- hydrogen plasma --- VUV radiation --- surface modification --- hydrophilic --- polyamide --- gaseous plasma --- water contact angle --- XPS --- polyamide membranes --- magnetron sputtering --- TiO2 + AgO coatings --- low-pressure plasma --- plasma treatment --- polyaniline (PANI) --- conductive polymer --- plasma polymerization --- aniline --- atmospheric pressure plasma reactor (AP plasma reactor) --- in-situ iodine (I2) doping --- atmospheric pressure plasma --- filler --- polylactic acid --- polymer composite --- polyethylene --- corona discharge --- polyethylene glycol --- adhesion --- polymer --- biomedical applications --- additive manufacturing --- toluidine blue method --- enzymatic degradation --- microwave discharge --- discharges in liquids --- microwave discharge in liquid hydrocarbons --- methods of generation --- plasma properties --- gas products --- solid products --- plasma diagnostics --- plasma modeling --- room temperature growth --- porous polythiophene --- conducting polymer --- NO2 --- gas sensors --- ion beam sputtering --- continuum equation --- plasma --- sublimation --- PA6.6 --- cold plasma --- electrical discharges --- voltage multiplier --- polymers --- oleofobization --- paper --- cellulose --- HMDSO --- atmospheric-pressure plasma --- solution plasma --- polymer films --- nanoparticles --- surface wettability --- graphene oxide --- cyclic olefin copolymer --- GO reduction --- titanium (Ti) alloys --- low-temperature plasma polymerization --- plasma-fluorocarbon-polymer --- anti-adhesive surface --- inflammatory/immunological response --- intramuscularly implantation --- atmospheric pressure plasma jet --- dielectric barrier discharge --- piezoelectric direct discharge --- surface free energy --- test ink --- surface activation --- allyl-substituted cyclic carbonate --- free-radical polymerization --- plasma process --- plasma polymerisation --- plasma deposition --- poly(lactic acid) --- PLA --- ascorbic acid --- fumaric acid --- grafting --- wettability --- BOPP foil --- DCSBD --- VDBD --- ageing --- surface functionalization --- atmospheric pressure plasmas --- glow-like discharge --- single pin electrode --- PANI thin film


Book
Polymer Processing and Surfaces
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on fundamental and applied research on polymer processing and its effect on the final surface as the optimization of polymer surface properties results in the unique applicability of these over other materials. The development and testing of the next generation of polymeric and composite materials is of particular interest. Special attention is given to polymer surface modification, external stimuli-responsive surfaces, coatings, adhesion, polymer and composites fatigue analysis, evaluation of the surface quality and microhardness, processing parameter optimization, characterization techniques, among others.

Keywords

thermoplastic polyurethanes blends --- pressure sensitive adhesives --- viscoelastic properties --- adhesion properties --- tack --- creep --- cohesion properties --- nano-structure functional film --- magnetron sputtering --- cellulose insulation polymer --- space charge --- hydrophobicity --- zinc oxide --- polytetrafluoroethylene --- bromoisobutyryl esterification --- cornstarch --- synthesis process --- past stability --- adhesion --- film properties --- mullite --- whiskers --- nonaqueous precipitation method --- aluminum fluoride --- polar transformation --- screw --- aspect ratio --- carbon nanotube --- dispersion --- masterbatch --- nanocomposite --- polyamide --- polyamide 6 --- halloysite nanotube --- functionalizing agent --- in situ polymerization --- melt blending --- polymorphism --- hydrothermal ageing --- polymers --- octaglycidyl-POSS --- DGEBA --- dicyandiamide --- accelerators --- corrosion --- protective coatings --- infrared spectroscopy --- rheology --- poplar wood --- waterborne UV lacquer product --- wood modification --- contact angle --- spectroscopy --- super-hydrophobic coating --- elastic sensor --- carbon nanotubes --- wearable electronics --- monitoring of breathing --- strain sensor --- polymer composite --- CNTs --- construction composite --- friction resistance --- surface state --- low dielectric constant --- PI --- irradiation --- dielectric loss --- tin compounds --- valsartan --- poly(vinyl chloride) --- additives --- average molecular weight --- weight loss --- functional group index --- PET --- polymer --- plasma jet --- tilted application --- ROS distribution --- UV --- VUV --- epoxy --- Joule heating --- fast curing --- accelerated forming --- shape memory --- Acrylonitrile Butadiene Styrene --- sound absorption --- 3D printing technology --- frequency --- thickness --- air gap --- polyvinyl alcohol --- cationic polyacrylamide --- polyvinyl chloride --- azodicarbonamide --- micro-structure --- diffusion plate --- micro injection molding --- grinding --- ethylene-octene-copolymer --- carbon fibers --- polyaniline --- polypyrrole --- thermoelectric composites --- surface coating --- dopamine hydrochloride --- graphene oxide --- surgical suture --- friction --- Poly(vinylidene chloride-co-acrylonitrile) (P(VDC-co-AN )) --- thermo-dynamic surface characterization --- surface free energy --- inverse gas chromatography --- visual traits --- computer vision and image processing --- basalt fiber --- epoxy composite --- glass transition temperature --- DMA --- TMA --- creep recovery --- stress-relaxation --- heterogeneous nucleation --- cell morphology --- injection molding foaming --- composite materials --- visualization --- gloss transition defect --- surface defect --- surface gloss --- shrinkage --- mold surface replication --- surface analysis --- injection molding --- polymer surface modification --- hydrophobic properties --- optimization --- mathematical modeling --- poly(ethylene glycol) (PEG) --- conjugation --- N,N′-disuccinimidyl carbonate (DSC) --- immobilization --- surface modification --- ultra-high molecular weight polyethylene --- cellulose nanofiber --- bionanocomposite --- melt-blending --- ethanol mixing

Listing 1 - 8 of 8
Sort by