Narrow your search

Library

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

UMons (2)

VIVES (2)

KU Leuven (1)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2009 (1)

2007 (1)

Listing 1 - 2 of 2
Sort by

Book
Levy processes and stochastic calculus
Author:
ISBN: 9780521738651 0521738652 9780511809781 9780511650581 0511650582 9780511532931 0511532938 9780511533846 0511533845 0511809786 1107193338 0511532024 9781107193338 9780511532023 Year: 2009 Volume: 116 Publisher: Cambridge : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.

Fluctuation theory for Lévy processes : Ecole d'Eté de Probabilités de Saint-Flour XXXV - 2005
Authors: ---
ISBN: 9783540485100 3540485104 9786610853359 1280853352 3540485112 Year: 2007 Volume: 1897 Publisher: Berlin, Heidelberg : Springer-Verlag,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Lévy processes, i.e. processes in continuous time with stationary and independent increments, are named after Paul Lévy, who made the connection with infinitely divisible distributions and described their structure. They form a flexible class of models, which have been applied to the study of storage processes, insurance risk, queues, turbulence, laser cooling, ... and of course finance, where the feature that they include examples having "heavy tails" is particularly important. Their sample path behaviour poses a variety of difficult and fascinating problems. Such problems, and also some related distributional problems, are addressed in detail in these notes that reflect the content of the course given by R. Doney in St. Flour in 2005.

Listing 1 - 2 of 2
Sort by