Listing 1 - 10 of 10 |
Sort by
|
Choose an application
The Special Issue book presents some works considered innovative in the field of geotechnics and whose practical application may occur in the near future. This collection of twelve papers, in addition to their scientific merit, addresses some of the current and future challenges in geotechnics. The published papers cover a wide range of emerging topics with a specific focus on the research, design, construction, and performance of geotechnical works. These works are expected to inspire the development of geotechnics, contributing to the future construction of more resilient and sustainable geotechnical structures.
Technology: general issues --- History of engineering & technology --- ground improvement --- earth reinforcement --- geotextiles --- numerical analysis --- spatial TDR --- moisture content --- soil suction --- SWRC --- transient flow --- excess pore water pressure --- pond filling rates --- upstream tailings dam --- AdaBoost --- support vector machine --- k-nearest neighbor --- random forest --- rockfill materials --- shear strength --- cement-treated soil --- cellulose nanofibre --- strength --- permeability --- sulfate-bearing soil --- ettringite --- soil stabilization --- gypseous soil --- calcium-based stabilizer --- non-calcium-based stabilizer --- biopolymer --- soil stabilisation xanthan gum --- sandy soil --- cement --- soil contamination --- oil field --- SEM --- treatment --- soil-cement mixtures --- fibers --- mechanical properties --- machine learning --- artificial neural networks --- soil improvement --- multiwall carbon nanotubes (MWCNTs) --- unconfined compressive strength tests --- surfactant --- quality control --- quality assurance --- deep mixing method --- cemented iron ore tailings behaviour --- filtered tailings stacking --- Portland cement --- compaction
Choose an application
This book, entitled “Plasma-Based Synthesis and Modification of Nanomaterials” is a collection of nine original research articles devoted to the application of different atmospheric pressure (APPs) and low-pressure (LPPs) plasmas for the synthesis or modification of various nanomaterials (NMs) of exceptional properties. These articles also show the structural and morphological characterization of the synthesized NMs and their further interesting and unique applications in different areas of science and technology. The readers interested in the capabilities of plasma-based treatments will quickly be convinced that APPs and LPPs enable one to efficiently synthesize or modify differentiated NMs using a minimal number of operations. Indeed, the presented procedures are eco-friendly and usually involve single-step processes, thus considerably lowering labor investment and costs. As a result, the production of new NMs and their functionalization is more straightforward and can be carried out on a much larger scale compared to other methods and procedures involving complex chemical treatments and processes. The size and morphology, as well as the structural and optical properties of the resulting NMs are tunable and tailorable. In addition to the desirable and reproducible physical dimensions, crystallinity, functionality, and spectral properties of the resultant NMs, the NMs fabricated and/or modified with the aid of APPs are commonly ready-to-use prior to their specific applications, without any initial pre-treatments.
plasma–liquid interactions --- n/a --- plasma synthesis --- pre-treatment --- liquid phase plasma --- anode materials --- CO-hydrogenation --- nanoparticles --- Clavibacter michiganensis --- cold atmospheric-pressure plasma --- mercury ion --- dielectric barrier discharge --- low-temperature Fischer–Tropsch --- nanocellulose --- nanoparticle --- solution plasma --- activated carbon powder --- ionic liquid --- nitrogen-doped carbon --- heat transfer --- polymer nanocomposite --- Dickeya solani --- stabilizer --- plant protection --- pulsed plasma in liquid --- Xanthomonas campestris pv. campestris --- Pd-Fe alloy --- quercetin --- iron oxide nanoparticle --- phytopathogens --- pseudo-capacitive characteristics --- submerged liquid plasma --- atmospheric pressure plasma --- plasma treatment --- Ralstonia solanacearum --- batteries --- nano-catalysts --- direct current atmospheric pressure glow discharge --- nanostructures --- Erwinia amylovora --- carbon dots --- silicon --- capacitively coupled plasma --- necrosis --- upconversion --- quarantine --- plasma-liquid interactions --- low-temperature Fischer-Tropsch
Choose an application
This multidisciplinary book covers a wide range of topics addressing critical challenges for advancing the understanding and management of shale oil and shale gas resources. Both fundamental and practical issues are considered. By covering a variety of technical topics, we aim to contribute to building a more integrated perspective to meet major challenges faced by shale resources. Combining complementary techniques and examining multiple sources of data serve to advance our current knowledge about these unconventional reservoirs. The book is a result of interdisciplinary and collaborative work. The content includes contributions authored by active scientists with ample expertise in their fields. Each article was carefully peer-reviewed by researchers, and the editorial process was performed by an experienced team of Senior Editors, Guest Editors, Topic Editors, and Editorial Board Members. The first part is devoted to fundamental topics, mostly investigated on the laboratory scale. The second part elaborates on larger scales (at near-wellbore and field scales). Finally, two related technologies, which could be relevant for shale plays applications, are presented. With this Special Issue, we provide a channel for sharing information and lessons learned collected from different plays and from different disciplines.
fracture mode --- Multi Finger Caliper --- sensitivity analysis --- shale oil --- borehole stability --- shale reservoir --- XRD --- XRF --- shear deformation --- optimization --- DSC --- EDX --- imbibition --- oil shale --- shale --- pore size distribution --- seismic wavefield --- unconventional --- fracturing fluid --- shale gas reservoir --- elastomer seal --- oil production --- leaching --- elemental analysis --- Chang 7 reservoir --- shale reservoirs --- Wufeng-Longmaxi shale --- TGA --- fracturing --- solid-liquid extraction --- fuling gas field --- Niutitang formation --- isolated organic matter --- SEM --- safety levels of activity --- well integrity --- flowback fluid --- osmotic hydration --- anisotropy --- surface hydration --- ionic stabilizer --- quantitative evaluation --- tight oil recovery --- FTIR --- fluid-solid-heat coupling --- liner hanger --- dynamic crack initiation toughness --- Jordan --- numerical simulation --- organic matter pores --- shale drilling fluid --- finite element analysis --- multistage fracturing --- well --- negative extreme swelling ratio --- volume fracturing --- contact pressure --- NSCB specimen
Choose an application
Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels.
Technology: general issues --- History of engineering & technology --- collision avoidance --- ship domain --- fuzzy inference --- collision risk --- early warning system --- marine vessel --- tracking controller --- stability --- functional --- optimal damping --- fin stabilizer --- ship turning --- heel/roll reduction --- L2-gain --- uncertainty --- non-linearity --- ship motion control --- path-following --- guidance algorithm --- nonlinear feedback --- AIS Data --- trajectory prediction --- waterway transportation --- neural networks --- autonomous navigation --- multi-joint autonomous underwater vehicle (MJ-AUV) --- 3-dimensional modeling --- LQR --- LESO --- multicriteria route planning --- genetic algorithm --- particle swarm optimization --- oceanic meteorological routing --- cooperative game theory --- supply chain management --- supply disruption --- unmanned surface vehicle --- Guidance, Navigation and Control --- course keeping --- adaptive sliding mode --- unmanned surface vehicle (USV) --- system identification --- traditional neural network --- physics-informed neural network --- zigzag test --- n/a
Choose an application
The electrical energy industry is undergoing dramatic changes: massive deployment of renewables, increasing share of DC networks at transmission and distribution levels, and at the same time, a continuing reduction in conventional synchronous generation, all contribute to a situation where a variety of technical and economic challenges emerge. As the society’s reliance on electrical power continues to increase as a result of international decarbonisation commitments, the need for secure and uninterrupted delivery of electrical energy to all customers has never been greater. Power system protection plays an important enabling role in future decarbonized energy systems. This book includes ten papers covering a wide range of topics related to protection system problems and solutions, such as adaptive protection, protection of HVDC and LVDC systems, unconventional or enhanced protection methods, protection of superconducting transmission cables, and high voltage lightning protection. This volume has been edited by Adam Dyśko, Senior Lecturer at the University of Strathclyde, UK, and Dimitrios Tzelepis, Research Fellow at the University of Strathclyde.
Technology: general issues --- History of engineering & technology --- decentralized protection scheme --- fault analysis --- low voltage direct current grids --- plug-and-play systems --- solid-state circuit breakers --- DC grids --- fault protection --- local detection --- local action --- DC circuit breaker --- AC microgrid --- adaptive protection --- IEC 61850 GOOSE protocol --- substation automation --- adaptive auto-reclosing --- power system protection --- EV transmission lines --- transient fault --- Hilbert-Huang transform --- microgrid --- distributed generation --- inverse-time over-current protection --- coordination optimization --- superconducting cable --- quench --- high temperature --- coppers stabilizer --- superconducting tape --- fault current limiting feature --- power generation-side --- multi-information fusion --- hierarchical protection system --- system layer --- station layer --- local layer --- wavelet entropy --- transient component --- MMC-HVDC --- protection --- building integrated photovoltaic (BIPV) --- lightning attachment characteristics --- lightning energy withstand capability --- numerical and experimental analysis --- ±230 kV MMC-HVDC --- zero-crossing DCCB --- DC transmission line --- fault current --- hybrid DCCB --- bidirectional DCCB --- external elements --- energy dissipation
Choose an application
Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of physical, technological, environmental, and social phenomena, including aerospace, power, communications, and network systems, to name just a few. This book develops a general stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems, and presents the most complete treatment on vector Lyapunov function methods, vector dissipativity theory, and decentralized control architectures. Large-scale dynamical systems are strongly interconnected and consist of interacting subsystems exchanging matter, energy, or information with the environment. The sheer size, or dimensionality, of these systems necessitates decentralized analysis and control system synthesis methods for their analysis and design. Written in a theorem-proof format with examples to illustrate new concepts, this book addresses continuous-time, discrete-time, and hybrid large-scale systems. It develops finite-time stability and finite-time decentralized stabilization, thermodynamic modeling, maximum entropy control, and energy-based decentralized control. This book will interest applied mathematicians, dynamical systems theorists, control theorists, and engineers, and anyone seeking a fundamental and comprehensive understanding of large-scale interconnected dynamical systems and control.
Lyapunov stability --- Energy dissipation --- Dynamics --- Large scale systems --- Information Technology --- General and Others --- Lyapunov stability. --- Energy dissipation. --- Dynamics. --- Large scale systems. --- Systems, Large scale --- Dynamical systems --- Kinetics --- Liapunov stability --- Ljapunov stability --- Degradation, Energy --- Dissipation (Physics) --- Energy degradation --- Energy losses --- Losses, Energy --- Engineering systems --- System analysis --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Control theory --- Stability --- Clausius-type inequality. --- KalmanЙakubovichАopov conditions. --- KalmanЙakubovichАopov equations. --- KrasovskiiЌaSalle theorem. --- asymptotic stabilizability. --- combustion processes. --- comparison system. --- compartmental dynamical system theory. --- compartmental dynamical system. --- control Lyapunov function. --- control design. --- control signal. --- control vector Lyapunov function. --- convergence. --- coordination control. --- decentralized affine. --- decentralized control. --- decentralized controller. --- decentralized finite-time stabilizer. --- discrete-time dynamical system. --- dissipativity theory. --- dynamical system. --- ectropy. --- energy conservation. --- energy dissipation. --- energy equipartition. --- energy flow. --- entropy. --- feedback control law. --- feedback interconnection stability. --- feedback stabilizer. --- finite-time stability. --- finite-time stabilization. --- gain margin. --- hybrid closed-loop system. --- hybrid decentralized controller. --- hybrid dynamic controller. --- hybrid finite-time stabilizing controller. --- hybrid vector comparison system. --- hybrid vector dissipation inequality. --- impulsive differential equations. --- impulsive dynamical system. --- interconnected dynamical system. --- large-scale dynamical system. --- law of thermodynamics. --- linear energy exchange. --- maximum entropy control. --- multiagent interconnected system. --- multiagent systems. --- multivehicle coordinated motion control. --- nonconservation of ectropy. --- nonconservation of entropy. --- nonlinear dynamical system. --- optimality. --- plant energy. --- scalar Lyapunov function. --- sector margin. --- semistable dissipation matrix. --- stability analysis. --- stability theory. --- stability. --- state space. --- subsystem decomposition. --- subsystem energy. --- thermoacoustic instabilities. --- thermodynamic modeling. --- time-invariant set. --- time-varying set. --- vector Lyapunov function. --- vector available storage. --- vector comparison system. --- vector dissipation inequality. --- vector dissipative system. --- vector dissipativity theory. --- vector dissipativity. --- vector field. --- vector hybrid supply rate. --- vector lossless system. --- vector required supply. --- vector storage function. --- vector supply rate.
Choose an application
"This book contains a collection of modern anti-windup algorithms. It is aimed at practicing control engineers as well as graduate students. The reader will learn the objectives and terminology of the anti-windup problem, will be exposed to the mathematics behind anti-windup synthesis, and will gain exposure to a variety of anti-windup algorithms, which are illustrated through examples"--
Automatic control --- Linear control systems. --- Actuators. --- Mathematical models. --- Euler-Lagrange system. --- F8 aircraft. --- MIMO. --- SISO. --- algebraic loop. --- anti-windup algorithm. --- anti-windup augmentation. --- anti-windup compensator. --- anti-windup construction. --- anti-windup design. --- anti-windup filter. --- anti-windup synthesis. --- anti-windup. --- bumpless authority transfer. --- closed loop. --- compensation. --- constrained closed loop. --- controller. --- damped mass-spring. --- dead-time plant. --- direct control design. --- direct linear anti-windup. --- dynamic direct linear anti-windup. --- exponentially stable plant. --- exponentially unstable plant. --- external stability. --- feedback algorithm. --- feedback loop. --- feedback signal. --- global performance. --- global stability. --- hardware redundancy. --- input saturation. --- input. --- inputЯutput stability. --- internal stability. --- internal state. --- linear controller. --- linear injection. --- linear matrix inequalities. --- linear model recovery anti-windup. --- linear system. --- measurement governor. --- model predictive control. --- model recovery anti-windup. --- multicontroller scheme. --- nested saturation. --- non-exponentially unstable plant. --- nonlinear gain. --- nonlinear injection. --- nonlinear plant. --- nonlinear synthesis technique. --- nonlinear system. --- numerical algorithm. --- quadratic function. --- rank-deficient matrices. --- reduced-order compensator. --- reference governor. --- regional stability. --- reliable control. --- saturated closed loop. --- saturated closed-loop system. --- saturation nonlinearity. --- saturation. --- scheduling. --- servo-positioning system. --- small signal preservation. --- stability. --- stabilizer. --- state-space approach. --- stateгpace representation. --- static linear anti-windup. --- switching. --- unconstrained closed loop. --- unconstrained closed-loop system. --- unconstrained controller. --- unconstrained feedback system. --- unconstrained plant. --- unconstrained response recovery. --- unconstrained response. --- windup.
Choose an application
New adaptive and event-triggered control designs with concrete applications in undersea construction, offshore drilling, and cable elevatorsControl applications in undersea construction, cable elevators, and offshore drilling present major methodological challenges because they involve PDE systems (cables and drillstrings) of time-varying length, coupled with ODE systems (the attached loads or tools) that usually have unknown parameters and unmeasured states. In PDE Control of String-Actuated Motion, Ji Wang and Miroslav Krstic develop control algorithms for these complex PDE-ODE systems evolving on time-varying domains.Motivated by physical systems, the book’s algorithms are designed to operate, with rigorous mathematical guarantees, in the presence of real-world challenges, such as unknown parameters, unmeasured distributed states, environmental disturbances, delays, and event-triggered implementations. The book leverages the power of the PDE backstepping approach and expands its scope in many directions.Filled with theoretical innovations and comprehensive in its coverage, PDE Control of String-Actuated Motion provides new design tools and mathematical techniques with far-reaching potential in adaptive control, delay systems, and event-triggered control.
Boundary value problems. --- Cables --- Control theory. --- Differential equations, Partial. --- Equations of motion. --- Loads (Mechanics) --- Loads (Mechanics). --- SCIENCE / Mechanics / Dynamics. --- Vibration. --- Strains and stresses --- Boundary conditions (Differential equations) --- Differential equations --- Functions of complex variables --- Mathematical physics --- Initial value problems --- Motion equations --- Mechanics --- Lagrange equations --- Partial differential equations --- Dynamics --- Machine theory --- Accelerometer. --- Actuator. --- Adaptive control. --- Aircraft. --- Algorithm. --- Altitude. --- Ammeter. --- Amplitude. --- Angle of attack. --- Attitude control. --- Belt (mechanical). --- Bending. --- Buoyancy. --- Cape Crozier. --- Center of mass (relativistic). --- Center of pressure (fluid mechanics). --- Centrality. --- Centrifugal force. --- Chemical bond. --- Coanda effect. --- Combination. --- Compressibility. --- Contact force. --- Contour line. --- Control limits. --- Control reversal. --- Control variable. --- Convection. --- Coordinate system. --- Coupling. --- Drill bit. --- Dynamic pressure. --- Eigenfunction. --- Elastic instability. --- Elevon. --- Empennage. --- Equation. --- Flapper valve. --- Flight control surfaces. --- Force. --- Frequency domain. --- Frequency response. --- Fuselage. --- Gangway (nautical). --- Hamilton's principle. --- Imagery. --- Increment and decrement operators. --- Inference. --- Initial condition. --- Inspection. --- Laminar flow. --- Limit load (physics). --- Limit set. --- Linearization. --- Longitudinal mode. --- Loop around. --- Mach number. --- Main effect. --- Motion control. --- Motion planning. --- Newton's laws of motion. --- Open loop. --- Order of magnitude. --- Partial differential equation. --- Pitch angle (particle motion). --- Powered lift. --- Pressure. --- Propulsion. --- Publishing. --- Requirement. --- Rotation around a fixed axis. --- Shackle. --- Shear flow. --- Simultaneity. --- Skin friction drag. --- Solver. --- Specific impulse. --- Spiral model. --- Spline interpolation. --- State-space representation. --- Subroutine. --- Thrust vectoring. --- Torsion (mechanics). --- Torsional vibration. --- Trajectory. --- Transfer function. --- Transformation matrix. --- Transonic. --- Unit vector. --- Upper and lower bounds. --- Vector field. --- Vector projection. --- Vertical stabilizer. --- Vestibular system. --- Vibration control. --- Wind tunnel. --- Wire rope. --- SCIENCE / Mechanics / Dynamics --- MATHEMATICS / Applied
Choose an application
Cement and lime currently are the most common binders in building materials. However, alternative materials and methods are needed to overcome the functional limitations and environmental footprint of conventional products. This Special Issue dedicated to “New frontiers in cementitious and lime-based materials and composites” gathers selected reviews and experimental articles that showcase the most recent trends in this multidisciplinary field. Authoritative contributions from all around the world provide important insights into all areas of research related to cementitious and lime-based materials and composites, spanning from structural engineering to geotechnics, including materials science and processing technology. This Topical Collection is intended to foster innovation and help researchers and developers to identify new solutions for a more sustainable and functional built environment.
Technology: general issues --- History of engineering & technology --- durability --- hardened properties --- green composite --- fresh properties --- recycled concrete aggregates --- natural coarse aggregates --- enzyme-induced calcite precipitation --- microbial-induced calcite precipitation --- geotechnical engineering --- geoenvironmental engineering --- precast concrete wall --- interfacial bonding strength --- joint concrete --- interface processing --- washed rough surface --- roughness --- storage time --- cement mortar --- End-of-Life Tyre --- waste --- surface treatment --- compressive strength --- flexural strength --- workability --- fly ash --- freezing shaft sinking --- shaft lining structure --- uneven pressure --- hybrid fiber-reinforced concrete --- crack --- autogenous self-healing --- curing conditions --- supplementary cementitious materials (SCMs) --- GRC-PC --- integrated wall panels --- composite method --- shrinkage properties --- dissipation energy density --- high-strength concrete --- Weibull distribution --- damage mechanics --- constitutive model --- repeated impact --- ACI 544-2R --- high temperatures --- fire --- residual strength --- lime-cement mortar --- air-entrained agent --- heritage conservation --- reconstruction and restoration of historical buildings --- properties --- mechanical --- electrical resistivity --- ecofriendly ternary concrete --- SCBA --- SF --- coastal cemented soil --- nano silica --- iron tailings --- mechanical properties --- microscopic mechanism --- granite dust --- stabilizer --- particle size --- plasticity --- unconfined compression strength --- cement --- lime --- sustainable materials --- fibre-reinforced composite --- recycled aggregates
Choose an application
The optimization of motion and trajectory planning is an effective and usually costless approach to improving the performance of robots, mechatronic systems, automatic machines and multibody systems. Indeed, wise planning increases precision and machine productivity, while reducing vibrations, motion time, actuation effort and energy consumption. On the other hand, the availability of optimized methods for motion planning allows for a cheaper and lighter system construction. The issue of motion planning is also tightly linked with the synthesis of high-performance feedback and feedforward control schemes, which can either enhance the effectiveness of motion planning or compensate for its gaps. To collect and disseminate a meaningful collection of these applications, this book proposes 15 novel research studies that cover different sub-areas, in the framework of motion planning and control.
History of engineering & technology --- humanoid robot --- walk fast --- rotational slip --- ZMP --- gait planning --- quadruped robot --- whole robot control --- location trajectory --- dynamic gait --- fin stabilizer --- command-filtered backstepping --- sliding mode control --- prescribed performance --- disturbance observer --- OES --- inertial stability accuracy --- low-speed performance --- speed observation --- disturbance observation --- state-augmented Kalman filter --- composed control scheme --- fractional calculus --- FOPD controller --- underwater vehicle --- motion control --- modal analysis --- flexible multibody systems --- linearized models --- six-legged robot --- whole-body motion planning --- rugged terrain --- support --- swing --- gesture-based teleoperation --- robotic assembly --- force feedback --- compliant robot motion --- pickup manipulator --- adaptive genetic algorithm --- trajectory optimization --- improved artificial potential field method --- obstacle avoidance planning --- robust estimation --- dynamic model --- unknown but bounded noise --- extended set-membership filter --- dynamic balancing --- shaking force balancing --- acceleration control of the center of mass --- fully Cartesian coordinates --- natural coordinates --- parallel manipulators --- passive model --- biped walking --- Impact and contact --- friction force --- dissipative force --- energy efficiency --- robot --- motion design --- functional redundancy --- UR5 --- hybrid navigation system --- weighted-sum model --- a heuristic algorithm --- piecewise cubic Bézier curve --- mobile robot
Listing 1 - 10 of 10 |
Sort by
|