Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Integration of photovoltaics and electrification in agriculture. Works on the integration of photovoltaics in agriculture, as well as electrification and microgrids in agriculture. In addition, some works on sustainability in agriculture are added.
Technology: general issues --- History of engineering & technology --- transpiration --- PV heat conversion --- plant heat stress --- agrivoltaic system --- sustainable integration --- thermal analysis --- sustainable agriculture --- nexus approach --- rural development --- solar micro-grid --- techno-economic impact --- agrivoltaics --- solar energy --- agriculture --- energy innovation --- technology adoption --- photovoltaics --- extraterrestrial solar irradiation --- global, beam and diffuse solar components --- ground-reflected solar radiation --- horizontal, tilted and oriented solar irradiation --- solar photovoltaics --- agricultural robots --- Agri 4.0 --- battery-based farm machinery --- mobile irrigation system --- smart water sprinklers --- smart pesticide sprayers --- multi-purpose farming robots --- agrophotovoltaic --- agrivoltaic --- dual-land use --- solar sharing --- solar photovoltaic energy --- water-food-energy nexus --- fuses coordination --- protection device --- distributed generation --- distribution network --- photovoltaic --- DIgSILENT --- Agri-PV --- shading --- crop performance --- yields --- product quality --- organic agriculture --- biodynamic agriculture --- land productivity --- localization --- link budget --- spreading factor --- range --- LoRa --- node sensitivity --- SNR --- sustainable greenhouse --- semi-transparent photovoltaic panels --- amorphous silicon --- building-integrated photovoltaics --- microgrid --- organic photovoltaics --- greenhouses --- tomato --- arid region --- food-energy nexus --- solar-powered irrigation --- benefit-cost ratio --- land equivalent ratio --- transpiration --- PV heat conversion --- plant heat stress --- agrivoltaic system --- sustainable integration --- thermal analysis --- sustainable agriculture --- nexus approach --- rural development --- solar micro-grid --- techno-economic impact --- agrivoltaics --- solar energy --- agriculture --- energy innovation --- technology adoption --- photovoltaics --- extraterrestrial solar irradiation --- global, beam and diffuse solar components --- ground-reflected solar radiation --- horizontal, tilted and oriented solar irradiation --- solar photovoltaics --- agricultural robots --- Agri 4.0 --- battery-based farm machinery --- mobile irrigation system --- smart water sprinklers --- smart pesticide sprayers --- multi-purpose farming robots --- agrophotovoltaic --- agrivoltaic --- dual-land use --- solar sharing --- solar photovoltaic energy --- water-food-energy nexus --- fuses coordination --- protection device --- distributed generation --- distribution network --- photovoltaic --- DIgSILENT --- Agri-PV --- shading --- crop performance --- yields --- product quality --- organic agriculture --- biodynamic agriculture --- land productivity --- localization --- link budget --- spreading factor --- range --- LoRa --- node sensitivity --- SNR --- sustainable greenhouse --- semi-transparent photovoltaic panels --- amorphous silicon --- building-integrated photovoltaics --- microgrid --- organic photovoltaics --- greenhouses --- tomato --- arid region --- food-energy nexus --- solar-powered irrigation --- benefit-cost ratio --- land equivalent ratio
Choose an application
The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal.
Technology: general issues --- smart grid --- nontechnical losses --- electricity theft detection --- synthetic minority oversampling technique --- K-means cluster --- random forest --- smart grids --- smart energy system --- smart meter --- GDPR --- data privacy --- ethics --- multi-label learning --- Non-intrusive Load Monitoring --- appliance recognition --- fryze power theory --- V-I trajectory --- Convolutional Neural Network --- distance similarity matrix --- activation current --- electric vehicle --- synthetic data --- exponential distribution --- Poisson distribution --- Gaussian mixture models --- mathematical modeling --- machine learning --- simulation --- Non-Intrusive Load Monitoring (NILM) --- NILM datasets --- power signature --- electric load simulation --- data-driven approaches --- smart meters --- text convolutional neural networks (TextCNN) --- time-series classification --- data annotation --- non-intrusive load monitoring --- semi-automatic labeling --- appliance load signatures --- ambient influences --- device classification accuracy --- NILM --- signature --- load disaggregation --- transients --- pulse generator --- smart metering --- smart power grids --- power consumption data --- energy data processing --- user-centric applications of energy data --- convolutional neural network --- energy consumption --- energy data analytics --- energy disaggregation --- real-time --- smart meter data --- transient load signature --- attention mechanism --- deep neural network --- electrical energy --- load scheduling --- satisfaction --- Shapley Value --- solar photovoltaics --- review --- deep learning --- deep neural networks --- smart grid --- nontechnical losses --- electricity theft detection --- synthetic minority oversampling technique --- K-means cluster --- random forest --- smart grids --- smart energy system --- smart meter --- GDPR --- data privacy --- ethics --- multi-label learning --- Non-intrusive Load Monitoring --- appliance recognition --- fryze power theory --- V-I trajectory --- Convolutional Neural Network --- distance similarity matrix --- activation current --- electric vehicle --- synthetic data --- exponential distribution --- Poisson distribution --- Gaussian mixture models --- mathematical modeling --- machine learning --- simulation --- Non-Intrusive Load Monitoring (NILM) --- NILM datasets --- power signature --- electric load simulation --- data-driven approaches --- smart meters --- text convolutional neural networks (TextCNN) --- time-series classification --- data annotation --- non-intrusive load monitoring --- semi-automatic labeling --- appliance load signatures --- ambient influences --- device classification accuracy --- NILM --- signature --- load disaggregation --- transients --- pulse generator --- smart metering --- smart power grids --- power consumption data --- energy data processing --- user-centric applications of energy data --- convolutional neural network --- energy consumption --- energy data analytics --- energy disaggregation --- real-time --- smart meter data --- transient load signature --- attention mechanism --- deep neural network --- electrical energy --- load scheduling --- satisfaction --- Shapley Value --- solar photovoltaics --- review --- deep learning --- deep neural networks
Choose an application
The pandemic period has caused severe socio-economic damage, but it is accompanied by environmental deterioration that can also affect economic opportunities and social equity. In the face of this double risk, future generations are ready to be resilient and make their contribution not only on the consumption side, but also through their inclusion in all companies by bringing green and circular principles with them. Policy makers can also favor this choice.
Technology: general issues --- mobility choice --- COVID-19 --- best-worst method --- multi-criteria decision making --- air pollution --- air quality --- health effects --- economic burden --- food system --- circular economy --- sustainability --- EU --- Twitter --- COVID-19 pandemic --- local community --- perception analysis --- econometric modeling --- data science --- reflexive governance --- climate change --- infrastructure --- urban resilience --- social sustainability --- economic sustainability --- environmental sustainability --- China --- business --- innovation ecosystem --- innovation strategy --- electric vehicle --- dominant design --- crisis --- pandemic --- higher education --- digitalization --- distance learning --- Covid-19 outbreak --- resilience --- strategic resilience --- multi-domain resilience --- strategic agility --- change --- sustainability strategy --- financialization --- TFP --- innovation --- resilience of city --- infectious disease --- urban planning --- supply chain resilience --- IT disruptions --- efficiency measurement --- warehouse logistics --- DEA --- resilient supply chains --- external capital --- customer-supplier relationship --- circular network --- cyber-security --- e-commerce --- Europe --- supply chain collaboration --- small- and medium-sized enterprises --- grey DEMATEL --- fuzzy best-worst method --- agrivoltaic system --- solar photovoltaics --- agronomic management --- crop production --- Food-Energy-Water nexus --- sustainable integration --- women's leadership --- America Latina --- small and medium-sized enterprises --- renewable energy --- sustainable electricity production --- socio-economic sustainability --- sustainable development goals --- emission level --- levelized cost --- gross domestic product --- pig farmers --- adoption willingness of IoT traceability technology --- Unified Theory of Acceptance and Use of Technology --- Latent Moderate Structural Equations --- biomethane --- natural gas grid --- bioenergy --- biogas --- gas supply decarbonization --- incentives --- competences --- digitization --- digital transformation --- Asia Pacific --- CO2 emission --- demand shock --- hypothetical extraction method --- input-output model --- sectoral linkage --- emerging cities --- sustainable operations --- case studies --- the Asian region --- resilience decisions --- cybersecurity --- consumers' awareness --- methodology --- mobility choice --- COVID-19 --- best-worst method --- multi-criteria decision making --- air pollution --- air quality --- health effects --- economic burden --- food system --- circular economy --- sustainability --- EU --- Twitter --- COVID-19 pandemic --- local community --- perception analysis --- econometric modeling --- data science --- reflexive governance --- climate change --- infrastructure --- urban resilience --- social sustainability --- economic sustainability --- environmental sustainability --- China --- business --- innovation ecosystem --- innovation strategy --- electric vehicle --- dominant design --- crisis --- pandemic --- higher education --- digitalization --- distance learning --- Covid-19 outbreak --- resilience --- strategic resilience --- multi-domain resilience --- strategic agility --- change --- sustainability strategy --- financialization --- TFP --- innovation --- resilience of city --- infectious disease --- urban planning --- supply chain resilience --- IT disruptions --- efficiency measurement --- warehouse logistics --- DEA --- resilient supply chains --- external capital --- customer-supplier relationship --- circular network --- cyber-security --- e-commerce --- Europe --- supply chain collaboration --- small- and medium-sized enterprises --- grey DEMATEL --- fuzzy best-worst method --- agrivoltaic system --- solar photovoltaics --- agronomic management --- crop production --- Food-Energy-Water nexus --- sustainable integration --- women's leadership --- America Latina --- small and medium-sized enterprises --- renewable energy --- sustainable electricity production --- socio-economic sustainability --- sustainable development goals --- emission level --- levelized cost --- gross domestic product --- pig farmers --- adoption willingness of IoT traceability technology --- Unified Theory of Acceptance and Use of Technology --- Latent Moderate Structural Equations --- biomethane --- natural gas grid --- bioenergy --- biogas --- gas supply decarbonization --- incentives --- competences --- digitization --- digital transformation --- Asia Pacific --- CO2 emission --- demand shock --- hypothetical extraction method --- input-output model --- sectoral linkage --- emerging cities --- sustainable operations --- case studies --- the Asian region --- resilience decisions --- cybersecurity --- consumers' awareness --- methodology
Choose an application
Energy efficiency and low-carbon technologies are key contributors to curtailing the emission of greenhouse gases that continue to cause global warming. The efforts to reduce greenhouse gas emissions also strongly affect electrical power systems. Renewable sources, storage systems, and flexible loads provide new system controls, but power system operators and utilities have to deal with their fluctuating nature, limited storage capabilities, and typically higher infrastructure complexity with a growing number of heterogeneous components. In addition to the technological change of new components, the liberalization of energy markets and new regulatory rules bring contextual change that necessitates the restructuring of the design and operation of future energy systems. Sophisticated component design methods, intelligent information and communication architectures, automation and control concepts, new and advanced markets, as well as proper standards are necessary in order to manage the higher complexity of such intelligent power systems that form smart grids. Due to the considerably higher complexity of such cyber-physical energy systems, constituting the power system, automation, protection, information and communication technology (ICT), and system services, it is expected that the design and validation of smart-grid configurations will play a major role in future technology and system developments. However, an integrated approach for the design and evaluation of smart-grid configurations incorporating these diverse constituent parts remains evasive. The currently available validation approaches focus mainly on component-oriented methods. In order to guarantee a sustainable, affordable, and secure supply of electricity through the transition to a future smart grid with considerably higher complexity and innovation, new design, validation, and testing methods appropriate for cyber-physical systems are required. Therefore, this book summarizes recent research results and developments related to the design and validation of smart grid systems.
web of cells --- IHE --- distribution grid --- accuracy --- use cases --- Development --- synchrophasors --- underground cabling --- solar photovoltaics (PV) --- laboratory testbed --- conceptual structuration --- Quasi-Dynamic Power-Hardware-in-the-Loop --- coupling method --- time synchronization --- smart energy systems --- substation automation system (SAS) --- testing --- investment --- time delay --- interface algorithm (IA) --- PHIL (power hardware in the loop) --- network outage --- operational range of PHIL --- wind power --- elastic demand bids --- Model-Based Software Engineering --- Enterprise Architecture Management --- plug-in electric vehicle --- Smart Grid Architecture Model --- linear/switching amplifier --- pricing scheme --- average consensus --- traffic reduction technique --- cell --- gazelle --- smart grids control strategies --- real-time simulation and hardware-in-the-loop experiments --- 4G Long Term Evolution—LTE --- power loss allocation --- cyber-physical energy system --- experimentation --- microgrid --- resilience --- integration profiles --- remuneration scheme --- renewable energy sources --- shiftable loads --- droop control --- Power-Hardware-in-the-Loop --- peer-to-peer --- validation techniques for innovative smart grid solutions --- frequency containment control (FCC) --- synchronous power system --- power frequency characteristic --- development and implementation methods for smart grid technologies --- cascading procurement --- IEC 62559 --- device-to-device communication --- DC link --- validation and testing --- information and communication technology --- TOGAF --- battery energy storage system (BESS) --- active distribution network --- stability --- Validation --- synchronized measurements --- Architecture --- locational marginal prices --- SGAM --- network reconfiguration --- interoperability --- seamless communications --- fault management --- real-time simulation --- System-of-Systems --- market design elements --- micro combined heat and power (micro-CHP) --- co-simulation-based assessment methods --- islanded operation --- connectathon --- Software-in-the-Loop --- voltage control --- electricity distribution --- distribution phasor measurement units --- centralised control --- data mining --- robust optimization --- modelling and simulation of smart grid systems --- hardware-in-the-Loop --- smart grids --- cyber physical co-simulation --- design --- decentralised energy system --- procurement scheme --- Smart Grid --- smart grid --- distributed control --- fuzzy logic --- Power Hardware-in-the-Loop (PHIL) --- simulation initialization --- multi-agent system --- adaptive control --- real-time balancing market --- co-simulation --- optimal reserve allocation --- Web-of-Cells --- Hardware-in-the-Loop --- micro-synchrophasors --- linear decision rules --- synchronization --- hardware-in-the-loop --- PMU --- high-availability seamless redundancy (HSR) --- market design --- demand response
Listing 1 - 4 of 4 |
Sort by
|