Listing 1 - 10 of 16 | << page >> |
Sort by
|
Choose an application
The North Sea (NS) is a highly productive semi-enclosed shelf sea of the Atlantic Ocean located in the northern Europe. The southern North Sea (SNS), which is shallow and very well mixed, has long suffered from eutrophication problems. As a result, various policy measures have been taken by the NS surrounding countries (OSPAR Convention) with the aim of achieving good environmental status (GES) of the NS by 2020. The use of satellite remote sensing is a coherent method of data acquisition and provides information with generally much greater spatial and temporal coverage than in-situ data, which provide very localized information in space and time. Satellite remote sensing therefore offers an effective method to address long-term changes at the scale of an entire basin, such as the SNS. The main aim of this master thesis was to use high-level satellite gap-free products to assess the evolution of the eutrophication status and the phytoplankton dynamics of SNS over a period from 1998 to 2017. Our analyses showed a strong gradient of chlorophyll (CHL, a proxy for phytoplankton biomass) from coastal areas (higher CHL) to offshore areas (lower CHL). At the scale of the SNS domain, CHL increased between 1998 - 2004, stagnated thereafter, until 2014, when it started to decrease, probably as a consequence of the reduction of river-bone nutrient inputs. Our analyses also showed that the suspended particular matter (SPM) increased over the period by 0.042 mg/L.year. In addition, sea surface temperature (SST) also increased by 0.021°C/year in the SNS, which is positively correlated to the North Atlantic Oscillation over our period. Another convincing result is that we observed a phenological shift of about 1 month in the onset date of phytoplankton blooms. While it is difficult to identify a factor responsible for the observed phenological shift, it has been observed that the climate regime of the SNS changed during late 1990s. We therefore assume that this phenological shift is due to a change in planktonic communities associated with the rise in temperature as well as the de-eutrophication trend occurring in the SNS, which could have favored the emergence of winter diatom blooms.
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Physical geography & topography --- Paroxysmal explosive activity --- Eruption dynamics and parameters --- Volcano deformation and strain --- Volcano degassing --- thermal remote sensing --- doppler radar --- Lava fountains --- Volcanic aerosol --- satellite remote sensing --- HAZARD ASSESSMENT
Choose an application
This book is a compilation of six papers that provide some valuable information about mapping and monitoring forest cover using remotely sensed imagery. Examples include mapping large areas of forest, evaluating forest change over time, combining remotely sensed imagery with ground inventory information, and mapping forest characteristics from very high spatial resolution data. Together, these results demonstrate effective techniques for effectively learning more about our very important forest resources.
Research & information: general --- unmanned aerial systems --- canopy height model --- individual tree crown --- segmentation --- forest cover map --- national forest inventory --- aerial images --- Sentinel-2 --- multisensory approach --- forest monitoring --- remote sensing --- forest sampling --- inventory efficiency --- Forest Inventory and Analysis --- forest change --- degradation --- regeneration --- geospatial-temporal analysis --- trend --- Juniperus --- above-ground biomass --- land-use --- allometric equation --- satellite remote sensing --- land cover classification --- NDVI --- vegetation --- Savitzky-Golay filtering --- spatial and temporal analysis --- Ruoergai area
Choose an application
Remotely sensed data from either air- or spaceborne platforms are often leveraged for archaeological or more general cultural heritage goals. However, despite the steady developments in remote sensing technology over the past three decades, the thoughtful integration of data sources and methods into theoretically aware archaeological practice remains relatively underdeveloped. This volume contains nine contributions which, each in their way, address different theoretical dislocations and practical shortcomings in the use of remote sensing products within archaeological practice. These contributions provide the reader with food for thought on these challenges, and so contribute to archaeological remote sensing as a more mature interdisciplinary field characterised by explicit, thoughtful, and theoretically engaged approaches to understanding the past.
Biography & True Stories --- Archaeology --- relief mapping --- visualization --- blend modes --- digital elevation model --- airborne laser scanning --- lidar --- archaeological prospection --- deep learning --- citizen science --- The Netherlands --- archaeology --- arid environments --- satellite remote sensing --- lithological mapping --- lithic procurement --- chert sourcing --- Landsat 8 --- GIS --- ALS --- amplitude --- radiometric calibration --- reflectance --- Sicily --- transfer learning --- historic mining --- heritage management --- LiDAR --- hyperspectral data --- submerged areas --- cultural heritage monitoring --- anomaly detection --- MNF --- radiative transfer model --- Martin Heidegger --- technology --- mimesis --- remote sensing archaeology --- cultural context --- archaeological remote sensing --- satellite mission design --- satellite archaeology --- archaeological survey --- cropmarks --- empirical knowledge --- alluvial sediments --- geomorphological/pedological background --- soil spatial infrastructure --- statistical methods
Choose an application
Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by disasters. This book contains eleven scientific papers that have studied novel approaches applied to a range of natural disasters such as forest fire, urban land subsidence, flood, and tropical cyclones.
Research & information: general --- wildfire --- satellite vegetation indices --- live fuel moisture --- empirical model function --- Southern California --- chaparral ecosystem --- forest fire --- forest recovery --- satellite remote sensing --- vegetation index --- burn index --- gross primary production --- South Korea --- land subsidence --- PS-InSAR --- uneven settlement --- building construction --- Beijing urban area --- floodplain delineation --- inaccessible region --- machine learning --- flash flood --- risk --- LSSVM --- China --- Himawari-8 --- threshold-based algorithm --- remote sensing --- dryness monitoring --- soil moisture --- NIR-Red spectral space --- Landsat-8 --- MODIS --- Xinjiang province of China --- SDE --- PE --- groundwater level --- compressible sediment layer --- tropical cyclone formation --- WindSat --- disaster monitoring --- wireless sensor network --- debris flow --- anomaly detection --- deep learning --- accelerometer sensor --- total precipitable water --- Himawari-8 AHI --- random forest --- deep neural network --- XGBoost
Choose an application
This book provides a practical introduction to remote sensing applications for detecting changes in the terrestrial water cycle and understanding the causes and consequences of these changes. Covering a wide range of innovative remote sensing approaches for hydrological study, this book contributes significantly to the knowledge base of hydrology in the Anthropocene, i.e., global change hydrology. It is an excellent reference for students and professionals in the fields of hydrology, climate change, and geography.
Research & information: general --- Geography --- hydrological cycle --- Three-North region --- climate change --- land cover change --- Variable Infiltration Capacity (VIC) model --- evapotranspiration --- runoff --- soil moisture --- three-temperature model --- infrared remote sensing --- urban hedges --- cooling effects --- irrigation mapping --- remote sensing --- random forest --- subhumid region --- dry-wet regime --- vegetation dynamics --- GLDAS --- GIMMS --- Yarlung Zangbo River --- Microwave emissivity difference vegetation index (EDVI) --- evapotranspiration (ET) --- satellite remote sensing --- cloudy sky --- clouds and earth's radiation energy system (CERES) --- ChinaFLUX --- precipitation classification --- K-nearest neighbor --- Doppler radar --- Tropical Precipitation Measurement Mission (TRMM) --- irrigation signal --- SMAP --- irrigation intensity --- winter wheat --- precipitation --- evaluation --- error analysis --- Fengyun --- quantitative precipitation estimates --- GPM --- IMERG --- deep learning --- Daihai Lake --- Huangqihai Lake --- lake degradation --- weather radar quantitative precipitation estimation --- rain gauge --- radar-rain gauge merging --- leave-one-out cross validation --- verification --- China --- exorheic catchments --- water balance --- GRACE --- terrestrial water storage changes --- reservoir storage --- MODIS --- SRTM
Choose an application
Volcanoes release plumes of gas and ash to the atmosphere during episodes of passive and explosive behavior. These ejecta have important implications for the chemistry and composition of the troposphere and stratosphere, with the capacity to alter Earth's radiation budget and climate system over a range of temporal and spatial scales. Volcanogenic sulphur dioxide reacts to form sulphate aerosols, which increase global albedo, e.g., by reducing surface temperatures, in addition to perturbing the formation processes and optical properties of clouds. Released halogen species can also deplete stratospheric and tropospheric ozone. Volcanic degassing, furthermore, played a key role in the formation of Earth’s atmosphere, and volcanic plumes can affect air quality, pose hazards to aviation and human health, as well as damage ecosystems. The chemical compositions and emission rates of volcanic plumes are also monitored via a range of direct-sampling and remote-sensing instrumentation, in order to gain insights into subterranean processes, in the respect of the magmatic bodies these volatiles exsolve from. Given the significant role these gases play in driving volcanic activity, e.g., via pressurisation, the study of volcanic plumes is proving to be an increasingly fruitful means of improving our understanding of volcanic systems, potentially in concert with observations from geophysics and contributions from fluid dynamical modelling of conduit dynamics.
radioactive disequilibria 210Pb-210Bi-210Po --- volcanic geochemistry --- radiative transfer --- spherical-cap bubble --- plume --- satellite remote sensing --- portable photometry --- puffing --- Holuhraun --- interdisciplinary volcanology --- gas slug --- atmospheric remote sensing --- analysis software --- gases --- image processing --- remote sensing --- SEVIRI data --- oxygen and sulfur multi-isotopes --- nonlinear spectral unmixing --- UV cameras --- ultraviolet cameras --- cloud height --- atmospheric chemistry --- Python 2.7 --- degassing processes --- volcanic plumes --- fissure eruption --- radiative forcing --- basaltic volcanism --- volcanic plume top height --- O3 --- eruption start and duration --- Differential Absorption Lidar (DIAL) --- volcanic emissions --- volcanology --- volcanic CO2 flux --- volcanic aerosols --- 2011-2015 Etna lava fountains --- SO2 --- reactive halogen --- nonlinear PCA --- gas --- Etna volcano --- geochemical modelling --- BrO --- volcanic sulfate aerosols --- volcanic gases --- SSA --- hyperspectral remote sensing --- time averaged discharge rate --- eruption monitoring --- Bárðarbunga --- strombolian --- aerosol optical properties --- Mount Etna --- Taylor bubble
Choose an application
The concept of nitrogen gap (NG), i.e., its recognition and amelioration, forms the core of this book entitled Site-Specific Nutrient Management (SSNM). Determination of the presence of an NG between fields on a farm and/or within a particular field, together with its size, requires a set of highly reliable diagnostic tools. The necessary set of diagnostic tools, based classically on pedological and agrochemical methods, should be currently supported by remote-sensing methods. A combination of these two groups of methods is the only way to recognize the factors responsible for yield gap (YG) appearance and to offer a choice of measures for its effective amelioration. The NG concept is discussed in the two first papers (Grzebisz and Łukowiak, Agronomy 2021, 11, 419; Łukowiak et al., Agronomy 2020, 10, 1959). Crop productivity depends on a synchronization of plant demand for nitrogen and its supply from soil resources during the growing season. The action of nitrate nitrogen (N–NO3), resulting in direct plant crop response, can be treated by farmers as a crucial growth factor. The expected outcome also depends on the status of soil fertility factors, including pools of available nutrients and the activity of microorganisms. Three papers are devoted to these basic aspects of soil fertility management (Sulewska et al., Agronomy 2020, 10, 1958; Grzebisz et al., Agronomy 2020, 10, 1701; Hlisnikovsky et al., Agronomy 2021, 11, 1333). The resistance of a currently cultivated crop to seasonal weather variability depends to a great extent on the soil fertility level. This aspect is thoroughly discussed for three distinct soil types and climates with respect to their impact on yield (Hlisnikovsky et al., Agronomy 2020, 10, 1160—Czech Republic; Wang et al., Agronomy 2020, 10, 1237—China; Łukowiak and Grzebisz et al., Agronomy 2020, 10, 1364—Poland). In the fourth section of this book, the division a particular field into homogenous production zones is discussed as a basis for effective nitrogen management within the field. This topic is presented for different regions and crops (China, Poland, and the USA) (Cammarano et al., Agronomy 2020, 10, 1767; Panek et al., Agronomy 2020, 10, 1842; Larson et al., Agronomy 2020, 10, 1858).
Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- Triticum aestivum L. --- farmyard manure --- mineral fertilizers --- crude protein content --- soil properties, site-specific requirements --- yield --- site-specific nitrogen management --- regional optimal nitrogen management --- net return --- nitrogen use efficiency --- spatial variability --- temporal variability --- seed density --- N uptake --- indices of N productivity --- mineral N --- indigenous Nmin at spring --- post-harvest Nmin --- N balance --- N efficiency --- maximum photochemical efficiency of photosystem II --- chlorophyll content index --- soil enzymatic activity --- biological index fertility --- nitrogenase activity --- microelements fertilization (Ti --- Si --- B --- Mo --- Zn) --- soil --- nitrate nitrogen content --- contents of available phosphorus --- potassium --- magnesium --- calcium --- cardinal stages of WOSR growth --- PCA --- site-specific nutrient management --- soil brightness --- satellite remote sensing --- crop yield --- soil fertility --- winter wheat --- winter triticale --- vegetation indices --- NDVI --- grain yield --- number of spikes --- economics --- normalized difference vegetation index (NDVI) --- on-the-go sensors --- winter oilseed rape → winter triticale cropping sequence --- N input --- N total uptake --- N gap --- Beta vulgaris L. --- organic manure --- weather conditions --- soil chemistry --- sugar concentration --- climatic potential yield --- yield gap --- soil constraints --- subsoil --- remote sensing-techniques --- field --- a field --- crop production --- sustainability --- homogenous productivity units --- nitrogen indicators: in-season --- spatial --- vertical variability of N demand and supply --- spectral imagery
Choose an application
Coastal areas are remarkable regions with high spatiotemporal variability. A large population is affected by their physical and biological processes—resulting from effects on tourism to biodiversity and productivity. Coastal ecosystems perform several critical ecosystem services and functions, such as water oxygenation and nutrients provision, seafloor and beach stabilization (as sediment is controlled and trapped within the rhizomes of the seagrass meadows), carbon burial, as areas for nursery, and as refuge for several commercial and endemic species. Knowledge of the spatial distribution of marine habitats is prerequisite information for the conservation and sustainable use of marine resources. Remote sensing from UAVs to spaceborne sensors is offering a unique opportunity to measure, analyze, quantify, map, and explore the processes on the coastal areas at high temporal frequencies. This Special Issue on “Application of Remote Sensing in Coastal Areas” is specifically addresses those successful applications—from local to regional scale—in coastal environments related to ecosystem productivity, biodiversity, sea level rise.
Research & information: general --- Geography --- satellite remote sensing --- Landsat --- coastline --- barrier island --- morphological change --- coastal ocean --- Photon-counting lidar --- MABEL --- land cover --- remote sensing --- signal photons --- ground settlement --- marine reclamation land --- time series InSAR --- Sentinel-1 --- Xiamen New Airport --- Pleiades --- photogrammetry --- LiDAR --- RTK-GPS --- beach topography --- cliff coastlines --- time-series analysis --- terrestrial laser scanner --- southern Baltic Sea --- non-parametric Bayesian network --- satellite-derived bathymetry --- hydrography --- CubeSats --- hypertemporal --- zones of confidence --- PlanetScope --- vegetation mapping --- dunes --- unmanned aerial system --- pixel-based classification --- object-based classification --- dune vegetation classification --- coastal monitoring --- multispectral satellite images --- multi-temporal NDVI --- pixels based supervised classification --- Random Forest --- harmonization --- shoreline mapping --- semi-global subpixel localization --- intensity integral error --- polarimetric SAR --- polarimetric decomposition --- ship detection --- Euclidean distance --- mutual information --- new feature --- Bohai sea ice --- sea ice extent --- OLCI imagery --- sea ice information index --- waterline extraction --- sub-pixel --- surface water mapping --- data cube --- contour extraction --- water extraction --- water indices --- thresholding --- Coastal process --- wind wake --- heat advection --- multi-sensor --- ASAR --- oceanic thermal response --- Hainan Island --- coastal remote sensing --- habitat mapping --- unmanned aerial vehicle (UAV) --- unmanned aircraft system (UAS) --- drone --- object-based image analysis (OBIA) --- UAS data acquisition
Choose an application
Remote sensing data and methods are increasingly being implemented in assessments of volcanic processes and risk. This happens thanks to their capability to provide a spectrum of observation and measurement opportunities to accurately sense the dynamics, magnitude, frequency, and impacts of volcanic activity. This book includes research papers on the use of satellite, aerial, and ground-based remote sensing to detect thermal features and anomalies, investigate lava and pyroclastic flows, predict the flow path of lahars, measure gas emissions and plumes, and estimate ground deformation. The multi-disciplinary character of the approaches employed for volcano monitoring and the combination of a variety of sensor types, platforms, and methods that come out from the papers testify to the current scientific and technology trends toward multi-data and multi-sensor monitoring solutions. The added value of the papers lies in the demonstration of how remote sensing can improve our knowledge of volcanoes that pose a threat to local communities; back-analysis and critical revision of recent volcanic eruptions and unrest periods; and improvement of modeling and prediction methods. Therefore, the selected case studies also demonstrate the societal impact that this scientific discipline can potentially have on volcanic hazard and risk management.
Research & information: general --- volcanic thermal anomalies --- change detection --- Villarrica Volcano --- small satellites --- FireBIRD --- TET-1 --- gas emission monitoring --- X-band InSAR --- scanning Mini-DOAS --- Multi-GAS --- volcanic gases --- precipitable water vapor --- radar path delay --- Láscar volcano --- Mt. Etna --- multi-platform satellite observations --- RSTVOLC --- Stromboli volcano --- landslides --- effusive activity --- Ground-Based InSAR --- infrared live cam --- seismic monitoring --- PLEIADES --- Digital Elevation Models --- optical sensors --- volcano remote sensing --- volcano deformation --- SAR interferometry --- post-unrest deflation --- inversion modelling --- Santorini --- hyperspectral --- FENIX --- lava field --- SMACC --- LSMA --- volcano monitoring --- thermal imaging --- time series --- Seasonal-Trend Decomposition --- heat flux --- emissivity --- lava flow modeling --- remote sensing --- volcanic eruption interpretation --- eruption forecasting --- MSG SEVIRI --- wavelet --- thermal measurements --- lava fountain --- lava flow --- Mt.Etna --- eruptive style --- Timanfaya volcanic area --- HDR geothermal systems --- GPR --- EMI --- magnetic anomalies --- seasonality --- lahars hazard --- magma accumulation --- pyroclastic flows --- ash plumes --- volcanic cloud --- Landsat 8 --- elevation model --- Volcán de Colima --- lava flow volume estimation --- SPOT --- EO-1 ALI --- MODIS data --- SENTINEL-2 images --- infrasonic activity --- open-vent activity --- fissural eruption --- long- and short-term precursors --- SO2 fluxes --- UV Camera --- Etna Volcano --- explosive basaltic volcanism --- Bezymianny --- monitoring --- lava dome --- inflation --- SAR imaging --- radar pixel offsets --- acoustic infrasound --- volcanic emissions --- ground-based remote sensing --- Sentinel missions --- Convolutional Neural Network (CNN) --- Synthetic Aperture Radar (SAR) imaging --- InSAR processing --- infrared remote sensing --- SO2 gas emission --- satellite remote sensing --- ash fall --- lava flows --- pyroclastic density currents --- mapping --- volcanic hazard --- gas emissions --- edifice growth and collapse --- volcanic unrest --- thermal anomalies
Listing 1 - 10 of 16 | << page >> |
Sort by
|