Listing 1 - 3 of 3 |
Sort by
|
Choose an application
In classical approaches for the torque control of Permanent Magnet Synchronous Machines the torque references are converted into current references by static lookup tables which consider power losses. This procedure is dynamically suboptimal, interdependent and strongly machine-dependent. This work addresses the question: How can a Model Predictive Controller be designed to simultaneously optimize the objectives torque reference tracking and power loss minimization?
Electrical engineering --- Modellprädiktive Regelung (MPR) --- Permanentmagneterregte Synchronmaschine (PSM) --- multikriterielle Optimierung --- lexikographische Optimierung --- Model Predictive Control (MPC) --- Permanent Magnet Synchronous Machine (PMSM) --- Multi-Objective Optimization --- Lexicographic Optimization
Choose an application
This Special Issue deals with improvements in the energy efficiency of electric devices, machines, and drives, which are achieved through improvements in the design, modelling, control, and operation of the system. Properly sized and placed coils of a welding transformer can reduce the required iron core size and improve the efficiency of the welding system operation. New structures of the single-phase field excited flux switching machine improve its performance in terms of torque, while having higher back-EMF and unbalanced electromagnetic forces. A properly designed rotor notch reduces the torque ripple and cogging torque of interior permanent magnet motors for the drive platform of electric vehicles, resulting in lower vibrations and noise. In the field of modelling, the torque estimation of a Halbach array surface permanent magnet motor with a non-overlapping winding layout was improved by introducing an analytical two-dimensional subdomain model. A general method for determining the magnetically nonlinear two-axis dynamic models of rotary and linear synchronous reluctance machines and synchronous permanent magnet machines is introduced that considers the effects of slotting, mutual interaction between the slots and permanent magnets, saturation, cross saturation, and end effects. Advanced modern control solutions, such as neural network-based model reference adaptive control, fuzzy control, senseless control, torque/speed tracking control derived from the 3D non-holonomic integrator, including drift terms, maximum torque per ampere, and maximum efficiency characteristics, are applied to improve drive performance and overall system operation.
History of engineering & technology --- interior permanent magnet synchronous motor --- torque ripple --- cogging torque --- electric vehicle --- notch --- mathematical model --- Halbach Array --- surface permanent magnet --- magnetic vector potential --- torque --- in-wheel electric vehicle --- independent 4-wheel drive --- torque distribution --- fuzzy control --- traction control --- active yawrate control --- energy efficiency --- industry --- water circuits --- OpenModelica --- optimisation --- induction motor --- speed estimation --- model reference adaptive system --- kalman filter --- luenberger observer --- flux switching machine --- modular rotor --- non-overlap winding --- magnetic flux analysis --- iron losses --- copper loss --- stress analysis --- finite element method --- magnetic loss --- maximum efficiency (ME) characteristic --- maximum torque per ampere (MTPA) characteristic --- modeling --- permanent magnet synchronous machine (PMSM) --- sensorless control --- synchronous machines --- dynamic models --- nonlinear magnetics --- parameter estimation --- DC-DC converter --- resistance spot welding --- transformer --- efficiency --- dynamic power loss --- design --- induction machines --- nonlinear control --- torque/speed control
Choose an application
Interest in permanent magnet synchronous machines (PMSMs) is continuously increasing worldwide, especially with the increased use of renewable energy and the electrification of transports. This book contains the successful submissions of fifteen papers to a Special Issue of Energies on the subject area of “Permanent Magnet Synchronous Machines”. The focus is on permanent magnet synchronous machines and the electrical systems they are connected to. The presented work represents a wide range of areas. Studies of control systems, both for permanent magnet synchronous machines and for brushless DC motors, are presented and experimentally verified. Design studies of generators for wind power, wave power and hydro power are presented. Finite element method simulations and analytical design methods are used. The presented studies represent several of the different research fields on permanent magnet machines and electric drives.
MPC --- predictive current control (PCC) --- fault diagnosis --- modeling --- back electromotive force --- finite-element analysis --- sensorless control --- brushless dc motor --- flying start --- periodic timer interrupt --- digital simulation --- torque control --- saturation --- renewable energy --- finite element method --- sensorless motor --- electric propulsion systems --- electric vehicle --- energy efficiency --- sub-fractional slot-concentrated winding --- stability --- design tools --- brushless machine --- permanent magnet synchronous motor (PMSM) --- electrical signature analysis --- Vernier machine --- multiphase machine --- interior permanent magnet synchronous machines --- automotive applications --- pulse width modulation --- current ripples --- PMSM --- wave power --- outer rotor --- electric vehicle (EV) --- power control --- condition monitoring --- energy conversion --- sliding mode observer (SMO) --- field weakening --- small wind turbines --- interior permanent-magnet machines --- permanent-magnet machine --- free-wheeling period --- brushless DC (BLDC) motor --- speed tracking --- current spikes --- flux switching machine --- Brushless DC motors --- magnetic reluctance network --- winding inductance --- parameter perturbation --- DB-DTFC (deadbeat-direct torque and flux control) --- R-C filter --- phase-advanced method --- motor drives --- PMSM (permanent magnet synchronous motor) --- coils --- predictive maintenance --- cogging torque --- finite element analysis --- permanent magnet material --- vector control --- linear generator --- commutation error compensation --- electrical machine design --- permanent magnet synchronous generator --- wind generator --- mathematical model --- permanent magnet synchronous motor --- hybrid electric vehicle (HEV) --- stator --- bulk electric system --- permanent magnet synchronous machine (PMSM) --- synchronous generator
Listing 1 - 3 of 3 |
Sort by
|