Narrow your search

Library

ULiège (4)

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UGent (2)

ULB (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2021 (2)

2020 (1)

2019 (1)

Listing 1 - 4 of 4
Sort by

Book
Numerical prediction of curing and process-induced distortion of composite structures
Author:
ISBN: 1000125453 3731510634 Year: 2021 Publisher: Karlsruhe KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fiber-reinforced materials offer a huge potential for lightweight design of load-bearing structures. However, high-volume production of such parts is still a challenge in terms of cost efficiency and competitiveness. Numerical process simulation can be used to analyze underlying mechanisms and to find a suitable process design. In this study, the curing process of the resin is investigated with regard to its influence on RTM mold filling and process-induced distortion.


Book
Carbon Fibers and Their Composite Materials
Author:
ISBN: 303921103X 3039211021 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Carbon fiber is an oft-referenced material that serves as a means to remove mass from large transport infrastructure. Carbon fiber composites, typically plastics reinforced with the carbon fibers, are key materials in the 21st century and have already had a significant impact on reducing CO2 emissions. Though, as with any composite material, the interface where each component meets, in this case the fiber and plastic, is critical to the overall performance.


Book
Advances in Hybrid Rocket Technology and Related Analysis Methodologies
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book is an amazing collection of technical papers dealing with hybrid rockets. Once perceived as a niche technology, for about a decade, hybrid rockets have enjoyed renewed interest from both the propulsion technical community and industry. Hybrid motors can be used in practically all applications where a rocket is employed, but there are certain cases where they present a superior fit, such as sounding rockets, tactical missile systems, launch boosters and the emerging field of commercial space transportation. The novel space tourism business, indeed, will benefit from their safety and lower recurrent development costs. The subjects addressed in the book include the cutting edge technology employed to push forward this relatively new propulsion concept, spanning systems to improve fuel regression rate, control of the mixture ratio to optimize performance, computational fluid dynamics applied to the simulation of the internal ballistics, and some other novel system applications.

Keywords

History of engineering & technology --- hybrid rocket --- marine propulsion --- rupture disc --- idling operation --- underwater environment --- hybrid rocket engines --- multidisciplinary design optimization --- robust optimization --- electric feed system --- ballistic reconstruction technique --- fuel regression --- nozzle erosion --- c∗ efficiency --- hybrid --- regression rate --- self-disintegration --- HTPB --- paraffin --- low-energy polymer --- magnesium --- fuel regression rate --- internal ballistics --- computational fluid dynamics --- hybrid rocket propulsion --- swirl oxidizer injection --- feedback loop control --- error propagation analysis --- resistor-based sensors --- rocket --- regression --- Marxman --- diffusion-limited --- blowing factor --- 3D printing --- fuel grain --- hybrid combustion --- modeling and simulation --- hybrid propulsion --- paraffin-based fuel --- oxygen --- combustion --- testing --- nano-sized aluminum --- micron-sized aluminum --- fluoropolymer --- mechanically activated aluminum --- coated aluminum --- fuel-rich composite powder --- aluminum aggregation --- aluminum agglomeration --- mass burning rate --- "green" propellants --- nitrous oxide decomposition --- energy of activation --- 3-D printing --- hybrid rocket engine --- sounding rocket --- carbon fiber composite --- engine test --- total impulse --- lightweight design --- ignition system --- gas torch --- methane-oxygen combustion --- vortex combustion chamber --- hybrid rocket motor --- ramjet motor --- hybrid rocket --- marine propulsion --- rupture disc --- idling operation --- underwater environment --- hybrid rocket engines --- multidisciplinary design optimization --- robust optimization --- electric feed system --- ballistic reconstruction technique --- fuel regression --- nozzle erosion --- c∗ efficiency --- hybrid --- regression rate --- self-disintegration --- HTPB --- paraffin --- low-energy polymer --- magnesium --- fuel regression rate --- internal ballistics --- computational fluid dynamics --- hybrid rocket propulsion --- swirl oxidizer injection --- feedback loop control --- error propagation analysis --- resistor-based sensors --- rocket --- regression --- Marxman --- diffusion-limited --- blowing factor --- 3D printing --- fuel grain --- hybrid combustion --- modeling and simulation --- hybrid propulsion --- paraffin-based fuel --- oxygen --- combustion --- testing --- nano-sized aluminum --- micron-sized aluminum --- fluoropolymer --- mechanically activated aluminum --- coated aluminum --- fuel-rich composite powder --- aluminum aggregation --- aluminum agglomeration --- mass burning rate --- "green" propellants --- nitrous oxide decomposition --- energy of activation --- 3-D printing --- hybrid rocket engine --- sounding rocket --- carbon fiber composite --- engine test --- total impulse --- lightweight design --- ignition system --- gas torch --- methane-oxygen combustion --- vortex combustion chamber --- hybrid rocket motor --- ramjet motor


Book
Discontinuous Fiber Composites, Volume II
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Discontinuous fiber-reinforced polymers have gained importance in transportation industries due to their outstanding material properties, lower manufacturing costs and superior lightweight characteristics. One of the most attractive attributes of discontinuous fiber-reinforced composites is the ease with which they can be manufactured in large numbers, using injection and compression molding processes. The main aim of this Special Issue is to collect various investigations focused on the processing of discontinuous fiber-reinforced composites and the effect that processing has on fiber orientation, fiber length and fiber density distributions throughout the final product. Papers presenting investigations on the effect that fiber configurations have on the mechanical properties of the final composite products and materials were welcome in the Special Issue. Researchers who model and simulate processes involving discontinuous fiber composites as well as those performing experimental studies involving these composites were welcomed to submit papers. The authors were encouraged to present new models, constitutive laws, and measuring and monitoring techniques to provide a complete framework on these groundbreaking materials and to facilitate their use in different engineering applications.

Keywords

Research & information: general --- fiber reinforced plastics --- long fiber reinforced thermoplastics (LFT) --- sliding plate rheometer --- fiber microstructure --- fiber orientation --- direct fiber simulation --- mechanistic model --- fiber reinforced thermoplastics --- modeling --- short fiber reinforcement --- process simulation --- smoothed particle hydrodynamics --- composite foams --- closed cells --- image processing --- finite element analysis --- polymer composites --- long fiber-reinforced thermoplastics (LFTs) --- core region --- shell region --- fiber length distribution (FLD) --- selective laser sintering --- recoating --- PA6 --- polyamide --- glass --- fibres --- beads --- orientation --- recoating speed --- layer thickness --- energy density --- pARD-RSC --- short fiber reinforced --- mechanistic modelling --- Carbon nanotubes --- CNTs --- nanocomposites --- electrical resistivity --- conductivity --- electric fields --- computational modelling --- compression moulding --- moulding compounds --- optimisation --- wet laid --- isotropic --- tensile --- carbon fiber --- discontinuous --- recycling --- hybrid composites --- polymer-matrix composites (PMCs) --- thermotropic liquid crystalline polymer --- glass fibers --- long fiber reinforced plastics --- fiber breakage --- fiber length --- additive tooling --- additive manufacturing --- rapid tooling --- injection molding --- polypropylene --- long-fiber-reinforced thermoplastics --- fiber concentration --- stereolithography --- carbon fiber recycling --- lightweight design --- long fiber-reinforced thermoplastics --- parameter-optimization --- injection molding compounding --- long fiber reinforced thermoplastics --- fiber orientation models --- calibration --- discontinuous fiber composites (DFC) --- compression molding --- sheet molding compound (SMC) --- carbon fiber sheet molding compound (CF-SMC) --- randomly oriented strands (ROS) --- computed tomography (CT) --- direct fiber simulation (DFS) --- prepreg platelet molding compound (PPMC) --- tow-based discontinuous composite (TBDC) --- plastics processing --- composites --- glass fiber --- sheet molding compound --- long fiber --- fiber content --- fiber reinforced plastics --- long fiber reinforced thermoplastics (LFT) --- sliding plate rheometer --- fiber microstructure --- fiber orientation --- direct fiber simulation --- mechanistic model --- fiber reinforced thermoplastics --- modeling --- short fiber reinforcement --- process simulation --- smoothed particle hydrodynamics --- composite foams --- closed cells --- image processing --- finite element analysis --- polymer composites --- long fiber-reinforced thermoplastics (LFTs) --- core region --- shell region --- fiber length distribution (FLD) --- selective laser sintering --- recoating --- PA6 --- polyamide --- glass --- fibres --- beads --- orientation --- recoating speed --- layer thickness --- energy density --- pARD-RSC --- short fiber reinforced --- mechanistic modelling --- Carbon nanotubes --- CNTs --- nanocomposites --- electrical resistivity --- conductivity --- electric fields --- computational modelling --- compression moulding --- moulding compounds --- optimisation --- wet laid --- isotropic --- tensile --- carbon fiber --- discontinuous --- recycling --- hybrid composites --- polymer-matrix composites (PMCs) --- thermotropic liquid crystalline polymer --- glass fibers --- long fiber reinforced plastics --- fiber breakage --- fiber length --- additive tooling --- additive manufacturing --- rapid tooling --- injection molding --- polypropylene --- long-fiber-reinforced thermoplastics --- fiber concentration --- stereolithography --- carbon fiber recycling --- lightweight design --- long fiber-reinforced thermoplastics --- parameter-optimization --- injection molding compounding --- long fiber reinforced thermoplastics --- fiber orientation models --- calibration --- discontinuous fiber composites (DFC) --- compression molding --- sheet molding compound (SMC) --- carbon fiber sheet molding compound (CF-SMC) --- randomly oriented strands (ROS) --- computed tomography (CT) --- direct fiber simulation (DFS) --- prepreg platelet molding compound (PPMC) --- tow-based discontinuous composite (TBDC) --- plastics processing --- composites --- glass fiber --- sheet molding compound --- long fiber --- fiber content

Listing 1 - 4 of 4
Sort by