Narrow your search

Library

ULiège (7)

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

UGent (1)

ULB (1)

More...

Resource type

book (6)

dissertation (1)


Language

English (6)

French (1)


Year
From To Submit

2022 (1)

2021 (1)

2020 (5)

Listing 1 - 7 of 7
Sort by

Dissertation
Mémoire, y compris stage professionnalisant[BR]- Séminaires méthodologiques intégratifs[BR]- Mémoire : "Recherche de facteurs prédictifs de saignement excessifs et de transfusion homologie en chirurgie vasculaire périphérique"
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Etude observationnelle rétrospective non interventionnelle portant sur une population ayant bénéficié d’une chirurgie vasculaire périphérique des membres inférieurs au CHU de Liège. Cette étude a pour but : -d'identifier les caractéristiques cliniques et biologiques des patients sujets à une chirurgie vasculaire périphérique permettant de prédire une spoliation sanguine significative qui validera l’utilisation proactive d’un récupérateur laveur de globule.
-Comparer les ressources transfusionnelles homologues utilisées selon l’utilisation ou non d’un récupérateur laveur de globule
-Evaluer l’apport de l’utilisation du récupérateur laveur de globules pour le pronostic post-opératoire du patient
-Définir un cadre rationnel à l’utilisation systématique et pro-actif du récupérateur laveur de globules en chirurgie vasculaire périphérique.


Book
Semi-Solid Processing of Alloys and Composites
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Semi-solid metal (SSM) processing, as a viable alternative manufacturing route to those of conventional casting and forging, has not yet been fully exploited despite nearly half a century since its introduction to the metal industry. The slow pace of adopting SSM routes may be due to various reasons, including capital costs, profit margins, and, most importantly, the lack of detailed analysis of various SSM processes in open literature to confidently establish their advantages over more conventional routes. Therefore, the SSM community must disseminate their findings more effectively to generate increased confidence in SSM processes in the eyes of our industrial leaders. As such, we have embarked on the task to invite the leaders in SSM research to share their findings in a Special Issue dedicated to semi-solid processing of metals and composites. SSM processing takes advantage of both forming and shaping characteristics usually employed for liquid and solid materials. In the absence of shear forces, the semi-solid metal has similar characteristics to solids, i.e., easily transferred and shaped; by applying a defined force, the viscosity is reduced and the material flows like a liquid. These unique dual characteristics have made SSM routes attractive alternatives to conventional casting on an industrial scale. With the intention of taking full advantage of SSM characteristics, it is crucial to understand SSM processing, including topics such as solidification and structural evolution, flow behavior through modelling and rheology, new processes and process control, alloy development, and properties in general. This Special Issue focuses on the recent research and findings in the field with the aim of filling the gap between industry and academia, and to shed light on some of the fundamentals of science and technology of semi-solid processing.

Keywords

History of engineering & technology --- 7075 aluminum alloy --- thixoforming --- post-welding-heat treatment --- electron beam welding (EBW) --- nano-sized SiC particle --- wear rate --- friction coefficient --- rheoformed --- thixoformed --- semi-solid --- microstructure --- mechanical properties --- wear --- corrosion --- Al-Si alloys --- rheocasting --- HPDC --- electrochemical evaluation --- rheological model --- semi-solid state --- Mg alloys --- high-temperature rheology --- rheological properties --- rheology --- semi-solid alloys --- thixotropy --- rheometer --- compression test --- viscosity --- semi-solid material --- A356 alloy --- electromagnetic stirring --- compression --- primary α-Al particle --- enclosed cooling slope channel --- ZCuSn10P1 --- microstructure refinement --- properties --- thixowelding --- thixojoining --- semisolid joining --- cold-work tool steel --- semisolid processing --- thixoformability --- Fe-rich Al-Si-Cu alloy --- 2024 aluminum matrix composites --- Al2O3 nanoparticles --- polarized light microscopy --- anodic etching --- EBSD --- grain --- globule --- Al-Si alloy --- semi-solid metal processing --- EMS --- thixocasting --- 7075 aluminum alloy --- thixoforming --- post-welding-heat treatment --- electron beam welding (EBW) --- nano-sized SiC particle --- wear rate --- friction coefficient --- rheoformed --- thixoformed --- semi-solid --- microstructure --- mechanical properties --- wear --- corrosion --- Al-Si alloys --- rheocasting --- HPDC --- electrochemical evaluation --- rheological model --- semi-solid state --- Mg alloys --- high-temperature rheology --- rheological properties --- rheology --- semi-solid alloys --- thixotropy --- rheometer --- compression test --- viscosity --- semi-solid material --- A356 alloy --- electromagnetic stirring --- compression --- primary α-Al particle --- enclosed cooling slope channel --- ZCuSn10P1 --- microstructure refinement --- properties --- thixowelding --- thixojoining --- semisolid joining --- cold-work tool steel --- semisolid processing --- thixoformability --- Fe-rich Al-Si-Cu alloy --- 2024 aluminum matrix composites --- Al2O3 nanoparticles --- polarized light microscopy --- anodic etching --- EBSD --- grain --- globule --- Al-Si alloy --- semi-solid metal processing --- EMS --- thixocasting


Book
Neonatal Nutrition for Inflammatory Disorders and Necrotizing Enterocolitis
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Nutrients Special Issue focuses on neonatal nutritional advances for inflammatory disorders affecting infants such as necrotizing enterocolitis (NEC). Nutrition can significantly impact the development of certain diseases that afflict infants. This Special Issue aims to bring together the latest research on the role of nutrition in preventing or impacting neonatal disorders. Specifically, this Special Issue focuses on the role of breast milk or donor breast milk and the various components in milk that have been demonstrated to protect against NEC and other inflammatory diseases. This issue provides a comprehensive composite of the advances in nutritional strategies that can modulate or prevent neonatal intestinal disorders.

Keywords

Research & information: general --- Biology, life sciences --- Food & society --- donor breast milk --- human milk --- milk analysis --- very low birth weight --- preterm --- growth --- preterm infant --- donor human milk --- formula feeding --- breastfeeding --- necrotizing enterocolitis --- breast milk --- prematurity --- immunity --- newborn --- inflammation --- colostrum administration --- premature neonates --- clinical outcomes --- intestinal resection --- short bowel syndrome --- intestinal adaptation --- microbiome --- parenteral nutrition --- hormones --- milk fat globule --- long chain polyunsaturated fatty acids --- premature infants --- neonatal --- intestine --- glycosaminoglycans --- intestinal inflammation --- bioactive --- donor milk --- gastroschisis --- intestinal atresia --- human milk fortifier --- patient empowerment --- neonatal nutrition --- communication --- product labeling --- NICU parent --- extracellular vesicle --- exosome --- immature intestine --- formula --- osmolality --- breastmilk --- late onset sepsis --- bloodstream infections --- enteric pathogens --- human milk banks --- NEC --- meta-analysis --- breast-feeding --- spontaneous intestinal perforation --- feeding --- nutrition --- donor breast milk --- human milk --- milk analysis --- very low birth weight --- preterm --- growth --- preterm infant --- donor human milk --- formula feeding --- breastfeeding --- necrotizing enterocolitis --- breast milk --- prematurity --- immunity --- newborn --- inflammation --- colostrum administration --- premature neonates --- clinical outcomes --- intestinal resection --- short bowel syndrome --- intestinal adaptation --- microbiome --- parenteral nutrition --- hormones --- milk fat globule --- long chain polyunsaturated fatty acids --- premature infants --- neonatal --- intestine --- glycosaminoglycans --- intestinal inflammation --- bioactive --- donor milk --- gastroschisis --- intestinal atresia --- human milk fortifier --- patient empowerment --- neonatal nutrition --- communication --- product labeling --- NICU parent --- extracellular vesicle --- exosome --- immature intestine --- formula --- osmolality --- breastmilk --- late onset sepsis --- bloodstream infections --- enteric pathogens --- human milk banks --- NEC --- meta-analysis --- breast-feeding --- spontaneous intestinal perforation --- feeding --- nutrition


Book
Advances in Thermoresponsive Polymers
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thermoresponsive polymers, materials able to undergo sharp and often reversible phase separations in response to temperature stimuli, are introducing new paradigms in different fields, including medicine, advanced separations and oil and gas. In "Advances in Thermoresponsive Polymers", a clear picture of the frontiers reached in the understanding of the mechanistic behavior associated with temperature-induced phase separation, the influence of the polymer structure in regulating the macroscopic behavior of these materials and the latest applications for which thermoresponsive polymers show great potential is provided.

Keywords

Technology: general issues --- Chemical engineering --- poly(N,N-diethylacrylamide) --- glycidyl methacrylate --- thermoresponsive copolymer --- α-chymotrypsin --- polymer-enzyme conjugate nanoparticle --- polymeric nanoparticles --- emulsion polymerization --- RAFT --- thermo-responsive polymers --- smart materials --- LCST --- phase diagram --- phase separation --- thermoresponsive star-shaped polymers --- poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines --- aqueous solutions --- light scattering --- turbidimetry --- microcalorimetry --- aggregation --- dual-stimuli-responsive materials --- thin films --- out-of-equilibrium --- thermoresponsive --- oligo(ethylene glycol) --- OEGylated --- poly(amino acid) --- ring-opening polymerization --- post-polymerization modification --- Ugi reaction --- synthesis --- star-shaped macromolecules --- calix[n]arene --- block and gradient copolymers of poly-2-alkyl-2-oxazolines --- conformation --- thermoresponsibility --- self-organization --- poly-N-vinylcaprolactam --- thermoresponsive polymers --- polymer-protein conjugates --- controlled release --- temperature-sensitive polymers --- hydrogels --- stereocomplexation --- polylactic acid --- temperature/reduction --- self-recombination --- thermosensitive polymers --- enzyme complexation --- reversible inactivation --- UCST polymers --- stimuli-responsive polymers --- electronic paramagnetic resonance --- spin probe --- nitroxides --- coil to globule --- poly(L-lysine) --- N-isopropylacrylamide --- aza-Michael addition reaction --- thermo-responsive --- pH-responsive --- biodegradable polymer --- poly(N,N-diethylacrylamide) --- glycidyl methacrylate --- thermoresponsive copolymer --- α-chymotrypsin --- polymer-enzyme conjugate nanoparticle --- polymeric nanoparticles --- emulsion polymerization --- RAFT --- thermo-responsive polymers --- smart materials --- LCST --- phase diagram --- phase separation --- thermoresponsive star-shaped polymers --- poly-2-alkyl-2-oxazines and poly-2-alkyl-2-oxazolines --- aqueous solutions --- light scattering --- turbidimetry --- microcalorimetry --- aggregation --- dual-stimuli-responsive materials --- thin films --- out-of-equilibrium --- thermoresponsive --- oligo(ethylene glycol) --- OEGylated --- poly(amino acid) --- ring-opening polymerization --- post-polymerization modification --- Ugi reaction --- synthesis --- star-shaped macromolecules --- calix[n]arene --- block and gradient copolymers of poly-2-alkyl-2-oxazolines --- conformation --- thermoresponsibility --- self-organization --- poly-N-vinylcaprolactam --- thermoresponsive polymers --- polymer-protein conjugates --- controlled release --- temperature-sensitive polymers --- hydrogels --- stereocomplexation --- polylactic acid --- temperature/reduction --- self-recombination --- thermosensitive polymers --- enzyme complexation --- reversible inactivation --- UCST polymers --- stimuli-responsive polymers --- electronic paramagnetic resonance --- spin probe --- nitroxides --- coil to globule --- poly(L-lysine) --- N-isopropylacrylamide --- aza-Michael addition reaction --- thermo-responsive --- pH-responsive --- biodegradable polymer


Book
Chemical and Technological Characterization of Dairy Products
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Milk processing is one of the most ancient food technologies, dating back to around 6000 B.C. A huge number of milk products have been developed worldwide, representing a spectacular example of biodiversity and a priceless cultural heritage. After millennia of unanimous appreciation as a pillar of human nutrition, a series of questions about the desirability of their wide consumption have been raised. In the light of the growing threat deriving mostly from the spread of veganism and health consciousness, improving milk prcoessing safety and dairy nutritional characteristics, as well as deepening their functional characteristics, are of a primary exigency. This Special Issue contains several articles focusing on this hot topic, all of which add knowledge to the field and supply interesting ideas for developing new products and processes.

Keywords

Technology: general issues --- milk composition --- Parmigiano Reggiano cheese --- cheese-making efficiency --- curd fines --- cheese-making losses --- zinc --- ewes' milk cheese --- rumenic acid --- zinc-dependent enzyme --- volatile compound --- cheesemaking --- donkey milk --- fatty acids --- sensory analysis --- VOC --- starch --- yogurt --- rheology --- sensory --- texture --- defatted cheese --- peptides --- amino acids --- bioactivity --- digestibility --- cheese quality --- mountain cheese --- fatty acid profile --- volatile organic compounds --- sensory properties --- milk clotting --- cheese --- kiwifruit --- actinidin --- nutraceutical properties --- microstructure --- Raman spectroscopy --- confocal laser scanning microscopy --- cheese freezing --- cream cheese --- NMR spectroscopy --- cryoprotectants --- black tea --- acidified dairy gel --- textural property --- antioxidant capacity --- functional yogurt --- fenugreek and Moringa oleifera seed flours --- total phenolic content --- antioxidant activity --- antibacterial activity --- mineral content --- Rubus suavissimus S. Lee (Chinese sweet tea) --- antioxidant --- anticancer --- antihypertensive --- polymerized goat milk whey protein --- soy isoflavones --- nanoparticle --- physicochemical property --- milk fat globules --- bovine milk proteins --- milk fat globule membrane --- comparative proteomics --- infant formula preparation --- panela cheese --- angiotensin-converting enzyme inhibition --- probiotic addition --- DPPH --- ABTS --- milk composition --- Parmigiano Reggiano cheese --- cheese-making efficiency --- curd fines --- cheese-making losses --- zinc --- ewes' milk cheese --- rumenic acid --- zinc-dependent enzyme --- volatile compound --- cheesemaking --- donkey milk --- fatty acids --- sensory analysis --- VOC --- starch --- yogurt --- rheology --- sensory --- texture --- defatted cheese --- peptides --- amino acids --- bioactivity --- digestibility --- cheese quality --- mountain cheese --- fatty acid profile --- volatile organic compounds --- sensory properties --- milk clotting --- cheese --- kiwifruit --- actinidin --- nutraceutical properties --- microstructure --- Raman spectroscopy --- confocal laser scanning microscopy --- cheese freezing --- cream cheese --- NMR spectroscopy --- cryoprotectants --- black tea --- acidified dairy gel --- textural property --- antioxidant capacity --- functional yogurt --- fenugreek and Moringa oleifera seed flours --- total phenolic content --- antioxidant activity --- antibacterial activity --- mineral content --- Rubus suavissimus S. Lee (Chinese sweet tea) --- antioxidant --- anticancer --- antihypertensive --- polymerized goat milk whey protein --- soy isoflavones --- nanoparticle --- physicochemical property --- milk fat globules --- bovine milk proteins --- milk fat globule membrane --- comparative proteomics --- infant formula preparation --- panela cheese --- angiotensin-converting enzyme inhibition --- probiotic addition --- DPPH --- ABTS


Book
Human Milk and Lactation
Author:
ISBN: 3039289241 3039289233 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Human milk is uniquely tailored to meet infants’ specific nutritional requirements. However, it is more than just “milk”. This dynamic and bioactive fluid allows mother–infant signalling over lactation, guiding the infant in the developmental and physiological processes. It exerts protection and life-long biological effects, playing a crucial role in promoting healthy growth and optimal cognitive development. The latest scientific advances have provided insight into different components of human milk and their dynamic changes over time. However, the complexity of human milk composition and the synergistic mechanisms responsible for its beneficial health effects have not yet been unravelled. Filling this knowledge gap will shed light on the biology of the developing infant and will contribute to the optimization of infant feeding, particularly that of the most vulnerable infants. Greater understanding of human milk will also help in elucidating the best strategies for its storage and handling. The increasing knowledge on human milk’s bioactive compounds together with the rapidly-advancing technological achievements will greatly enhance their use as prophylactic or therapeutic agents. The current Special Issue aims to welcome original works and literature reviews further exploring the complexity of human milk composition, the mechanisms underlying the beneficial effects associated with breastfeeding, and the factors and determinants involved in lactation, including its promotion and support.

Keywords

high pressure processing --- n/a --- lipids --- supplementation --- protective factors --- infant --- carbohydrate --- mothers --- antioxidant capacity --- protein --- fat --- cytokines --- bioactive factors --- late preterm --- zinc --- infants --- docosahexaenoic acid (DHA) --- pregnancy --- eicosapentaenoic acid (EPA) --- Lipidomics --- magnesium --- omega-3 fatty acids --- vitamin D deficiency --- flow injection analysis --- human milk benefits --- multiple source method --- 3?-sialyllactose (3?SL) --- milk banking --- milk group --- pasteurization --- video instruction --- Milk Fat Globule Membrane --- bile salt stimulated lipase --- breastfeeding difficulties --- breastfeeding support --- prematurity --- carotenoids --- hormones --- phosphocholine --- amino acids --- targeted metabolomics --- high-performance liquid chromatography (HPLC) --- choline --- selenium --- ?-linolenic acid --- arachidonic acid (ARA) --- docosahexaenoic acid --- human milk fortification --- protease inhibitors --- celiac disease --- copper --- term --- adipokines --- iodine --- mammary gland --- nutritional status --- food frequency questionnaire --- neonate --- early breastfeeding cessation --- prospective study --- breastfeeding --- mothers’ own milk --- disialyllacto-N-tetraose (DSLNT) --- country --- lactating women --- undernourishment --- proteases --- preterm --- expressing --- dietary assessment --- retinol --- body composition --- duration of lactation --- passive immunization --- 2?-fucosyllactose (2?FL) --- phosphorus --- clinical trial --- growth factors --- infant formula --- digestive tract --- human milk oligosaccharides (HMO) --- sodium --- nutrition --- eicosapentaenoic acid --- lipid metabolites --- lactation --- nervonic acid --- ?-tocopherol --- macronutrients --- glycoprotein --- term infant --- term infants --- maternal diet --- promotion of breastfeeding --- potassium --- antioxidants --- maternal immunoglobulins --- Human Milk --- human milk --- Phospholipids --- flu vaccine --- lactational stage --- lactose --- storage --- dietary intake --- Preterm infant --- immune-active proteins --- colostrum --- human milk fat --- inadequate intake --- milk therapy --- endogenous peptide --- calcium --- fatty acids --- breast milk --- pumping --- secretor --- LC-MS --- n-9 fatty acid --- Lewis --- donor human milk --- antenatal --- online --- iron --- growth --- donor milk --- mothers' own milk


Book
Functionally Relevant Macromolecular Interactions of Disordered Proteins
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Disordered proteins are relatively recent newcomers in protein science. They were first described in detail by Wright and Dyson, in their J. Mol. Biol. paper in 1999. First, it was generally thought for more than a decade that disordered proteins or disordered parts of proteins have different amino acid compositions than folded proteins, and various prediction methods were developed based on this principle. These methods were suitable for distinguishing between the disordered (unstructured) and structured proteins known at that time. In addition, they could predict the site where a folded protein binds to the disordered part of a protein, shaping the latter into a well-defined 3D structure. Recently, however, evidence has emerged for a new type of disordered protein family whose members can undergo coupled folding and binding without the involvement of any folded proteins. Instead, they interact with each other, stabilizing their structure via “mutual synergistic folding” and, surprisingly, they exhibit the same residue composition as the folded protein. Increasingly more examples have been found where disordered proteins interact with non-protein macromolecules, adding to the already large variety of protein–protein interactions. There is also a very new phenomenon when proteins are involved in phase separation, which can represent a weak but functionally important macromolecular interaction. These phenomena are presented and discussed in the chapters of this book.

Keywords

Research & information: general --- Biology, life sciences --- intrinsically disordered proteins --- epiproteome --- disordered protein platform --- molecular recognition feature --- post-translational modifications --- physiological homeostasis --- stress response --- RIN4 --- p53 --- molecular machines --- intrinsically disordered protein --- membrane-less organelle --- neurodegenerative disease --- p300 HAT acetylation --- post-translational modification --- protein aggregation --- Tau fibrillation --- intrinsically disorder proteins --- disorder-to-order regions --- protein–RNA interactions --- unstructured proteins --- conformational plasticity --- disordered protein --- folding --- ribosomal protein --- spectroscopy --- protein stability --- temperature response --- protein thermostability --- salt bridges --- meta strategy --- dual threshold --- significance voting --- decision tree based artificial neural network --- protein intrinsic disorder --- intrinsic disorder --- intrinsic disorder prediction --- intrinsically disordered region --- protein conformation --- transcriptome --- RNA sequencing --- Microarray --- differentially regulated genes --- gene ontology analysis --- functional analysis --- intrinsically disordered --- structural disorder --- correlated mutations --- co-evolution --- evolutionary couplings --- residue co-variation --- interaction surface --- residue contact network --- dehydron --- homodimer --- hydrogen bond --- inter-subunit interaction --- ion pair --- mutual synergistic folding --- solvent-accessible surface area --- stabilization center --- MLL proteins --- MLL4 --- lncRNA --- HOTAIR --- MEG3 --- leukemia --- histone lysine methyltransferase --- RNA binding --- protein --- hydration --- wide-line 1H NMR --- secretion --- immune --- extracellular --- protein-protein interaction --- structural domain --- evolution --- transcription factors --- DNA-protein interactions --- Sox2 sequential DNA loading --- smFRET --- DNA conformational landscape --- sequential DNA bending --- transcription factor dosage --- oligomer --- N-terminal prion protein --- copper binding --- prion disease mutations --- Nuclear pore complex --- FG-Nups --- phosphorylation --- coarse-grained --- CABS model --- MC simulations --- statistical force fields --- protein structure --- intrinsically disordered proteins (IDPs) --- neurodegenerative diseases --- aggregation --- drugs --- drug discovery --- plant virus --- eIF4E --- VPg --- potyvirus --- molten globule --- fluorescence anisotropy --- protein hydrodynamics --- intrinsically disordered proteins --- epiproteome --- disordered protein platform --- molecular recognition feature --- post-translational modifications --- physiological homeostasis --- stress response --- RIN4 --- p53 --- molecular machines --- intrinsically disordered protein --- membrane-less organelle --- neurodegenerative disease --- p300 HAT acetylation --- post-translational modification --- protein aggregation --- Tau fibrillation --- intrinsically disorder proteins --- disorder-to-order regions --- protein–RNA interactions --- unstructured proteins --- conformational plasticity --- disordered protein --- folding --- ribosomal protein --- spectroscopy --- protein stability --- temperature response --- protein thermostability --- salt bridges --- meta strategy --- dual threshold --- significance voting --- decision tree based artificial neural network --- protein intrinsic disorder --- intrinsic disorder --- intrinsic disorder prediction --- intrinsically disordered region --- protein conformation --- transcriptome --- RNA sequencing --- Microarray --- differentially regulated genes --- gene ontology analysis --- functional analysis --- intrinsically disordered --- structural disorder --- correlated mutations --- co-evolution --- evolutionary couplings --- residue co-variation --- interaction surface --- residue contact network --- dehydron --- homodimer --- hydrogen bond --- inter-subunit interaction --- ion pair --- mutual synergistic folding --- solvent-accessible surface area --- stabilization center --- MLL proteins --- MLL4 --- lncRNA --- HOTAIR --- MEG3 --- leukemia --- histone lysine methyltransferase --- RNA binding --- protein --- hydration --- wide-line 1H NMR --- secretion --- immune --- extracellular --- protein-protein interaction --- structural domain --- evolution --- transcription factors --- DNA-protein interactions --- Sox2 sequential DNA loading --- smFRET --- DNA conformational landscape --- sequential DNA bending --- transcription factor dosage --- oligomer --- N-terminal prion protein --- copper binding --- prion disease mutations --- Nuclear pore complex --- FG-Nups --- phosphorylation --- coarse-grained --- CABS model --- MC simulations --- statistical force fields --- protein structure --- intrinsically disordered proteins (IDPs) --- neurodegenerative diseases --- aggregation --- drugs --- drug discovery --- plant virus --- eIF4E --- VPg --- potyvirus --- molten globule --- fluorescence anisotropy --- protein hydrodynamics

Listing 1 - 7 of 7
Sort by