Listing 1 - 10 of 19 | << page >> |
Sort by
|
Choose an application
Titanium dioxide. --- Anatase --- Brookite --- Octahedrite --- Titania (Chemical) --- Titanic acid anhydride --- Titanic oxide --- Titanium oxide --- Titanium white --- Oxides --- Titanium compounds
Choose an application
Titanium ores --- Titanium dioxide --- Anatase --- Brookite --- Octahedrite --- Titania (Chemical) --- Titanic acid anhydride --- Titanic oxide --- Titanium oxide --- Titanium white --- Oxides --- Titanium compounds --- Ores
Choose an application
Titanium dioxide --- Industrial applications. --- Anatase --- Brookite --- Octahedrite --- Titania (Chemical) --- Titanic acid anhydride --- Titanic oxide --- Titanium oxide --- Titanium white --- Oxides --- Titanium compounds --- Titanium dioxide.
Choose an application
Titanium dioxide is mainly used as a pigment and photocatalyst. It is possible to find it in food, cosmetics, building materials, electric devices, and others. This book contains chapters about characteristics of anatase and rutile crystallographic structure of titanium dioxide and the use of theoretical calculation for photoactivity determination.
Titanium dioxide. --- Anatase --- Brookite --- Octahedrite --- Titania (Chemical) --- Titanic acid anhydride --- Titanic oxide --- Titanium oxide --- Titanium white --- Oxides --- Titanium compounds --- Physical Sciences --- Engineering and Technology --- Chemistry --- Inorganic Chemistry --- Solid-State Chemistry
Choose an application
Titanium dioxide is mainly used as a pigment and photocatalyst. It is possible to find it in food, cosmetics, building materials, electric devices, and others. This book contains chapters about application of titanium dioxide in different branches of economy such as the agriculture, the food industry, the medicine, the cosmetics, the water treatment technologies, and the semiconductors.
Titanium dioxide. --- Anatase --- Brookite --- Octahedrite --- Titania (Chemical) --- Titanic acid anhydride --- Titanic oxide --- Titanium oxide --- Titanium white --- Oxides --- Titanium compounds --- Physical Sciences --- Engineering and Technology --- Chemistry --- Inorganic Chemistry --- Solid-State Chemistry
Choose an application
Titanium dioxide is currently being used in many industrial products. It provides unique photocatalytic properties for water splitting and purification, bacterial inactivation, and organics degradation. It has also been widely used as the photoanode for dye-sensitized solar cells and coatings for self-cleaning surfaces, biomedical implants, and nanomedicine. This book covers various aspects of titanium dioxide nanomaterials including their unique one-dimensional, two-dimensional, mesoporous, and hierarchical nanostructures and their synthetic methods such as sol-gel, hydrothermal, anodic oxidation, and electrophoretic deposition, as well as its key applications in environmental and energy sectors. Through these 24 chapters written by experts from the international scientific community, readers will have access to a comprehensive overview of the recent research and development findings on the titanium dioxide nanomaterials.
Titanium dioxide. --- Anatase --- Brookite --- Octahedrite --- Titania (Chemical) --- Titanic acid anhydride --- Titanic oxide --- Titanium oxide --- Titanium white --- Oxides --- Titanium compounds --- Physical Sciences --- Engineering and Technology --- Materials Science --- Metals and Nonmetals
Choose an application
Semiconductor photocatalysts have attracted a great amount of multidiscipline research due to their high potential for solar-to-chemical-energy conversion applications, ranging from water and air purification to hydrogen and chemical fuel production. This unique diversity of photoinduced applications has spurred major research efforts on the rational design and development of photocatalytic materials with tailored structural, morphological, and optoelectronic properties in order to promote solar-light harvesting, easy photogenerated electron-hole recombination and the concomitant low quantum efficiency. This book presents a collection of original research articles on advanced photocatalytic materials, synthesized by novel fabrication approaches and/or innovative modifications that improve their performance in target photocatalytic applications such as water (cyanobacterial toxins, antibiotics, phenols, and dyes) and air (NOx and volatile organic compounds) pollutant degradation, hydrogen evolution, and hydrogen peroxide production by photoelectrochemical cells.
Technology: general issues --- anatase --- brookite --- C/N-TiO2 --- microcystin-LR --- photodegradation --- visible light --- TiO2 nanomaterials --- Au nanoparticles --- anodization --- photocatalytic degradation of antibiotics --- LC-MS/MS --- TiO2 --- photonic crystals --- graphene oxide nanocolloids --- reduced graphene oxide --- photocatalysis --- photocatalytic materials --- nanocomposites --- sulfate-modified BiVO4 --- methylene blue --- LED visible light --- photodecomposition --- anatase TiO2 nanocrystals --- high-energy facets --- photocatalytic activity --- photovoltaic performance --- photoactive cement --- TiO2/N --- NOx decomposition --- mechanical properties --- plasmonic photocatalysis --- silver-copper oxide --- VOCs remediation --- full-spectrum photoresponse --- carbon-doped titania --- carbon-modified titania --- graphene/titania --- vis-active photocatalyst --- antibacterial properties --- laser pyrolysis --- hydrogen peroxide --- CdS --- CdSe --- photoelectrocatalysis --- photocatalytic fuel cells --- photo fuel cells --- visible light activated titania --- heterojunction photocatalysts --- photonic crystal catalysts --- graphene-based photocatalysts --- water and air purification --- solar fuels --- anatase --- brookite --- C/N-TiO2 --- microcystin-LR --- photodegradation --- visible light --- TiO2 nanomaterials --- Au nanoparticles --- anodization --- photocatalytic degradation of antibiotics --- LC-MS/MS --- TiO2 --- photonic crystals --- graphene oxide nanocolloids --- reduced graphene oxide --- photocatalysis --- photocatalytic materials --- nanocomposites --- sulfate-modified BiVO4 --- methylene blue --- LED visible light --- photodecomposition --- anatase TiO2 nanocrystals --- high-energy facets --- photocatalytic activity --- photovoltaic performance --- photoactive cement --- TiO2/N --- NOx decomposition --- mechanical properties --- plasmonic photocatalysis --- silver-copper oxide --- VOCs remediation --- full-spectrum photoresponse --- carbon-doped titania --- carbon-modified titania --- graphene/titania --- vis-active photocatalyst --- antibacterial properties --- laser pyrolysis --- hydrogen peroxide --- CdS --- CdSe --- photoelectrocatalysis --- photocatalytic fuel cells --- photo fuel cells --- visible light activated titania --- heterojunction photocatalysts --- photonic crystal catalysts --- graphene-based photocatalysts --- water and air purification --- solar fuels
Choose an application
Pursuing a scalable production methodology for materials and advancing it from the laboratory to industry is beneficial to novel daily-life applications. From this perspective, chemical vapor deposition (CVD) offers a compromise between efficiency, controllability, tunability and excellent run-to-run repeatability in the coverage of monolayers on substrates. Hence, CVD meets all of the requirements for industrialization in basically all areas, including polymer coatings, metals, water-filtration systems, solar cells and so on. The Special Issue “Advances in Chemical Vapor Deposition” is dedicated to providing an overview of the latest experimental findings and identifying the growth parameters and characteristics of perovskites, TiO2, Al2O3, VO2 and V2O5 with desired qualities for potentially useful devices.
Technology: general issues --- APCVD --- VO2 --- processing parameters --- 2D --- chemical vapor deposition --- atomic layer deposition --- aluminum oxide --- aluminum tri-sec-butoxide --- thin film --- carbon nanotubes --- residual gas adsorption --- residual gas desorption --- field emission --- atmospheric pressure CVD --- low pressure CVD --- hybrid CVD --- aerosol assisted CVD --- pulsed CVD --- perovskite photovoltaic nanomaterials --- stabilization --- structural design --- performance optimization --- solar cells --- anatase single crystals --- process-induced nanostructures --- competitive growth --- pp-MOCVD --- vanadium pentoxide --- electrochromic --- spray pyrolysis --- ammonium metavanadate --- CVD --- electrochromism --- perovskite photovoltaic materials --- TiO2 --- Al2O3 --- V2O5 --- computational fluid dynamics --- APCVD --- VO2 --- processing parameters --- 2D --- chemical vapor deposition --- atomic layer deposition --- aluminum oxide --- aluminum tri-sec-butoxide --- thin film --- carbon nanotubes --- residual gas adsorption --- residual gas desorption --- field emission --- atmospheric pressure CVD --- low pressure CVD --- hybrid CVD --- aerosol assisted CVD --- pulsed CVD --- perovskite photovoltaic nanomaterials --- stabilization --- structural design --- performance optimization --- solar cells --- anatase single crystals --- process-induced nanostructures --- competitive growth --- pp-MOCVD --- vanadium pentoxide --- electrochromic --- spray pyrolysis --- ammonium metavanadate --- CVD --- electrochromism --- perovskite photovoltaic materials --- TiO2 --- Al2O3 --- V2O5 --- computational fluid dynamics
Choose an application
The quality of water is not only a technological and scientific issue, but a social and economic problem, in both developed and developing countries. Besides local regulations, which differ between regions and need constant upgrades, significant scientific developments are required in both the detection and removal of water contaminants. This Issue focuses on some recent advancements in the photocatalytic removal of organic pollutants, which is one of the aspects of the problem that involves the need of advanced catalysts and implies significant advancements in the field of materials science and chemical engineering.
History of engineering & technology --- indigo carmine --- resin --- Dielectric Barrier Discharge --- adsorption --- regeneration --- anatase/brookite biphasic --- nitrogen-doping --- sol-gel method --- visible light photocatalysis --- degradation of dyes --- polyaniline --- titanium dioxide --- copper(II) oxide --- cobalt oxide(II,III) --- photocatalytic fuel cell --- graphitic carbon nitride --- Fe doping --- Z-scheme --- strontium aluminates --- dye photodecomposition --- hydrothermal reaction --- sol-gel method --- phosphorescence --- photocatalytic decomposition of rhodamine B --- MIL-53(Fe) --- Ni/Fe-MOF --- visible light irradiation --- indigo carmine --- resin --- Dielectric Barrier Discharge --- adsorption --- regeneration --- anatase/brookite biphasic --- nitrogen-doping --- sol-gel method --- visible light photocatalysis --- degradation of dyes --- polyaniline --- titanium dioxide --- copper(II) oxide --- cobalt oxide(II,III) --- photocatalytic fuel cell --- graphitic carbon nitride --- Fe doping --- Z-scheme --- strontium aluminates --- dye photodecomposition --- hydrothermal reaction --- sol-gel method --- phosphorescence --- photocatalytic decomposition of rhodamine B --- MIL-53(Fe) --- Ni/Fe-MOF --- visible light irradiation
Choose an application
This outstanding thesis provides a wide-ranging overview of the growth of titanium dioxide thin films and its use in photo-electrochemicals such as water splitting. The context for water splitting is introduced with the theory of semiconductor-liquid junctions, which are dealt with in detail. In particular plasmonic enhancement of TiO2 by the addition of gold nanoparticles is considered in depth, including a thorough and critical review of the literature, which discusses the possible mechanisms that may be at work. Plasmonic enhancement is demonstrated with gold nanoparticles on Nb-doped TiO2. Finally, the use of temperature and pressure to control the phase and morphology of thin films grown by pulsed laser deposition is presented.
Engineering. --- Electrochemistry. --- Nanoscale science. --- Nanoscience. --- Nanostructures. --- Engineering --- Materials science. --- Materials Engineering. --- Characterization and Evaluation of Materials. --- Nanoscale Science and Technology. --- Materials. --- Titanium dioxide. --- Anatase --- Brookite --- Octahedrite --- Titania (Chemical) --- Titanic acid anhydride --- Titanic oxide --- Titanium oxide --- Titanium white --- Chemistry, Physical and theoretical --- Oxides --- Titanium compounds --- Surfaces (Physics). --- Chemistry. --- Physical sciences --- Physics --- Surface chemistry --- Surfaces (Technology) --- Engineering—Materials. --- Nanoscience --- Nano science --- Nanoscale science --- Nanosciences --- Science --- Material science
Listing 1 - 10 of 19 | << page >> |
Sort by
|