Narrow your search

Library

ULiège (20)

FARO (9)

KU Leuven (9)

LUCA School of Arts (9)

Odisee (9)

Thomas More Kempen (9)

Thomas More Mechelen (9)

UCLL (9)

UGent (9)

VIVES (9)

More...

Resource type

book (20)


Language

English (19)

German (1)


Year
From To Submit

2022 (5)

2021 (7)

2020 (3)

2019 (4)

2018 (1)

Listing 1 - 10 of 20 << page
of 2
>>
Sort by

Book
Intervallbeobachter für lineare parametervariante Systeme und deren Anwendung auf die Asynchronmaschine
Author:
ISBN: 1000086503 3731508575 Year: 2018 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

The topic of this publication is the design of two new set-based methods for the determination of the states of linear parameter-varying systems. These sets are computed by interval observers based on unknown but bounded inputs, outputs and parameters. The effectiveness of the methods is demonstrated by the state estimation of an induction motor that is achieved by combining the interval observers with a novel model of a voltage source inverter.


Book
Solar Energy Applications in Houses, Smart Cities and Microgrids
Author:
ISBN: 3039280694 3039280686 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Five papers were selected for this Special Issue, with three relating to solar energy applications in houses, smart cities, and microgrids; one studying the relationship between the smart city model and the concept of energy sustainability; and one addressing the following two topics: the lack of effectiveness of detection algorithms based on the voltage/frequency displacement concept under voltage-controlled inverters and the applicability limits of others based on the impedance measurement (IM).


Book
Power Quality in Microgrids Based on Distributed Generators
Authors: ---
ISBN: 3039280074 3039280066 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book comprises ten articles covering different aspects of power quality issues in microgrids and distributed generation (DG) systems, including 1) Detection and estimation of power quality; 2) Modeling; 3) Harmonic control for DG systems and microgrids; 4) Stability improvements for microgrids. Different power quality phenomena and solution were studied in the included papers, such as harmonics, resonance, frequency deviation, voltage sag, and fluctuation. From a network point of view, some papers studied the harmonic and stability issues in standalone microgrids which are more likely to cause power quality problems. Other papers discussed the power quality problems in microgrids which are weakly interconnected with the main distribution grid. In view of the published papers, there is a trend that increasingly advanced modeling, analysis, and control schemes were applied in the studies. Moreover, the latest works focus not only on single-unit problems but also multiple units or network issues. Although some of the hot topics are not included, this book covers multiple aspects of the current power quality research frontier, and represents a particularly useful reference book for frontier researchers in this field.


Book
Power Converter of Electric Machines, Renewable Energy Systems, and Transportation
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems.

Keywords

Technology: general issues --- Energy industries & utilities --- power systems for renewable energy --- fault-tolerant photovoltaic inverter --- islanding detection --- energy storage system --- DC/AC converter --- voltage-source --- multilevel inverter --- PV systems --- neutral point clamped inverter --- flying capacitor inverter --- cascaded inverter --- renewable energy systems --- ultra-fast chargers --- input-series input-parallel output-series output-parallel multimodule converter --- cross feedback output current sharing --- reflex charging --- digital twin --- doubly-fed induction generator, electrical machines --- finite elements method --- monitoring --- real-time --- wound rotor induction machine --- subsynchronous control interaction --- super-twisting sliding mode --- variable-gain --- doubly fed induction generator --- photovoltaic system --- grid --- sliding mode control --- synergetic control --- fractional-order control --- converter–machine association --- direct drive machine --- Permanent Magnet Vernier Machine --- synchronous generator --- wind energy system for domestic applications --- renewable energy --- adaptive --- fuzzy --- feedback linearization --- photovoltaic (PV) grid inverter --- voltage source inverter (VSI) --- doubly-fed induction generator --- wind power system --- sensorless control --- full order observer --- field oriented control --- grid connected system --- lithium batteries --- los minimization --- Modular Multilevel Converters --- optimization methods


Book
Advances and Trends in Mathematical Modelling, Control and Identification of Vibrating Systems
Authors: --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book introduces novel results on mathematical modelling, parameter identification, and automatic control for a wide range of applications of mechanical, electric, and mechatronic systems, where undesirable oscillations or vibrations are manifested. The six chapters of the book written by experts from international scientific community cover a wide range of interesting research topics related to: algebraic identification of rotordynamic parameters in rotor-bearing system using finite element models; model predictive control for active automotive suspension systems by means of hydraulic actuators; model-free data-driven-based control for a Voltage Source Converter-based Static Synchronous Compensator to improve the dynamic power grid performance under transient scenarios; an exact elasto-dynamics theory for bending vibrations for a class of flexible structures; motion profile tracking control and vibrating disturbance suppression for quadrotor aerial vehicles using artificial neural networks and particle swarm optimization; and multiple adaptive controllers based on B-Spline artificial neural networks for regulation and attenuation of low frequency oscillations for large-scale power systems. The book is addressed for both academic and industrial researchers and practitioners, as well as for postgraduate and undergraduate engineering students and other experts in a wide variety of disciplines seeking to know more about the advances and trends in mathematical modelling, control and identification of engineering systems in which undesirable oscillations or vibrations could be presented during their operation.


Book
Analysis of the Harmonic Performance of Power Converters and Electrical Drives
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems).


Book
Power Electronics and Energy Management for Battery Storage Systems
Authors: ---
ISBN: 3036552782 3036552774 Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The deployment of distributed renewable generation and e-mobility systems is creating a demand for improved dynamic performance, flexibility, and resilience in electrical grids. Various energy storages, such as stationary and electric vehicle batteries, together with power electronic interfaces, will play a key role in addressing these requests thanks to their enhanced functionality, fast response times, and configuration flexibility. For the large-scale implementation of this technology, the associated enabling developments are becoming of paramount importance. These include energy management algorithms; optimal sizing and coordinated control strategies of different storage technologies, including e-mobility storage; power electronic converters for interfacing renewables and battery systems, which allow for advanced interactions with the grid; and increase in round-trip efficiencies by means of advanced materials, components, and algorithms. This Special Issue contains the developments that have been published b researchers in the areas of power electronics, energy management and battery storage. A range of potential solutions to the existing barriers is presented, aiming to make the most out of these emerging technologies.


Book
HVDC/FACTS for Grid Services in Electric Power Systems
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Electric power systems are headed for a true changing of the guard, due to the urgent need for achieving sustainable energy delivery. Fortunately, the development of new technologies is driving the transition of power systems toward a carbon-free paradigm while maintaining the current standards of quality, efficiency, and resilience. The introduction of HVDC and FACTS in the 20th century, taking advantage of dramatic improvements in power electronics and control, gave rise to unprecedented levels of flexibility and speed of response in comparison with traditional electromechanical devices. This flexibility is nowadays required more than ever in order to solve a puzzle with pieces that do not always fit perfectly. This Special Issue aims to address the role that FACTS and HVDC systems can play in helping electric power systems face the challenges of the near future.

Keywords

History of engineering & technology --- VSC-HVDC --- unbalanced grid conditions --- double frequency ripples --- power compensation --- passive-based control --- disturbance observer --- dynamic capacitor --- inductive unbalanced load --- reactive power compensation --- imbalance suppression --- compensation ability --- HVDC transmission --- hybrid multi-terminal HVDC --- LCC --- MTDC --- power system analysis --- VSC --- breakers --- hybrid DC circuit breaker --- fault current limiters --- non-superconducting fault current limiters --- current-limiting inductors --- voltage source converter --- FACTS --- grid services --- CHIL --- PHIL --- lab testing --- field testing --- standards --- STATCOM --- replica --- review --- korean power system --- subsynchronous resonance (SSR) --- synchronous voltage reversal (SVR) --- thyristor controlled series capacitor (TCSC) --- test signal method --- virtual synchronous machine --- synchronous power controller --- power quality --- harmonics --- hybrid power quality compensation system --- the thyristor-controlled L and C-type filter (TCL-CTF) --- ancillary services --- HVDC systems --- loss management --- frequency control --- voltage and reactive power control --- black start --- congestion management --- distribution networks --- hybrid AC/DC networks --- power systems --- high voltage direct current (HVDC) transmission --- HVDC systems based on voltage source converters (VSC-HVDC) --- multi-terminal --- transient stability --- control strategies --- communication latency --- power oscillations --- UPFC --- non-linear control --- neural network --- model reference control --- High voltage direct current (HVDC) --- continuous commutation failures --- DC blocking --- emergency power support --- stability


Book
Applications of Power Electronics.
Authors: --- ---
ISBN: 3039210211 3039210203 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

Q-factor --- lithium-ion power battery pack --- electromagnetic field (EMF) --- expert systems --- total harmonic distortion (THD) --- current-fed inverter --- rotor design --- class-D amplifier --- LCL-S topology --- current switching ripple --- system in package --- energy storage modelling --- smart micro-grid --- embedded systems --- equivalent inductance --- SHIL --- permanent magnet --- static var generator (SVG) --- permanent magnet synchronous motor (PMSM) --- control strategy and algorithm --- digital control --- zero-voltage switching (ZVS) --- SOC estimator --- electric power --- optimal design --- electromagnetic field interference (EMI) --- line frequency instability --- analog phase control --- five-phase permanent magnet synchronous machine --- distribution generation --- leakage inductance --- adjacent two-phase open circuit fault (A2-Ph) --- chaotic PWM --- electric vehicles --- CMOS chaotic circuit --- series active filter --- cascaded topology --- total demand distortion --- efficiency motor --- triangular ramp generator --- 4T analog MOS control --- inductive coupling --- induction machines --- nanocrystalline core --- semi-active bridge --- multi-level control --- simulation models --- voltage source inverters (VSI) --- battery management system BMS --- voltage source converter --- current control loops --- droop control --- particle swarm optimization --- variable control gain --- state of charge SoC --- extended Kalman filter --- transient control --- multi-objective optimization --- composite equalizer --- converter --- DHIL --- five-leg voltage source inverter --- axial flux machines --- bifurcation --- active receivers --- field programmable gate array --- Nyquist stability analysis --- electric vehicle --- static compensator --- stability --- common-mode inductor --- DC–DC converters --- support vector machines --- electromagnetic compatibility --- real-time simulation --- passive equalization --- matrix converters --- wireless power transfer --- digital phase control --- compensation topology --- volt-per-hertz control (scalar control) --- switching losses --- voltage control --- hybrid converter --- bidirectional converter --- coupling factor --- selective harmonic elimination method --- power electronics --- soft switching --- optimization design --- multilevel inverter --- five-phase machine --- phase-shift control --- lithium-ion battery --- voltage boost --- VPI active damping control --- parameter identification --- electrical engineering communications --- current control --- DC–DC conversion --- battery management system --- GaN cascode --- single-switch --- high-frequency modeling --- synchronous motor --- power quality --- water purification --- power factor correction (PFC) --- composite active vectors modulation (CVM) --- digital signal controller --- line start --- power density --- hardware in loop --- n/a --- fault diagnosis --- multi-level converter (MLC) --- induction motor --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- neural networks --- electromagnetic interference filter --- battery chargers --- power converter --- harmonics --- multiphase space vector modulation --- torque ripple --- power factor correction --- electrical drives --- modular multilevel converter (MMC) --- active power filter --- double layer capacitor (DLC) models --- PMSG --- response time --- resonator structure --- floating-point --- effect factors --- DC-link voltage control --- sliding mode control --- phasor model technique --- wireless power transfer (WPT) --- slim DC-link drive --- fault-tolerant control --- lithium-ion batteries --- DC-AC power converters --- conducting angle determination (CAD) techniques --- variable speed pumped storage system --- impedance-based model --- one cycle control --- renewable energy sources --- series-series compensation --- cogging torque --- active rectifiers --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- battery energy storage systems --- filter --- power management system --- improved extended Kalman filter --- dead-time compensation --- disturbance observer --- reference phase calibration --- frequency locking --- space vector pulse width modulation (SVPWM) --- predictive controllers --- nine switch converter --- transmission line --- spread-spectrum technique --- energy storage --- electromagnetic interference --- renewable energy resources control --- harmonic linearization --- misalignment --- plug-in hybrid electric vehicles --- high level programing --- nearest level modulation (NLM) --- magnetic equivalent circuit --- EMI filter --- permanent-magnet machines --- real-time emulation --- switched capacitor --- back EMF --- fixed-point --- HF-link MPPT converter --- condition monitoring --- WPT standards --- switching frequency --- switching frequency modelling --- high frequency switching power supply --- field-programmable gate array --- three-phase bridgeless rectifier --- ice melting --- AC–DC power converters --- hybrid power filter --- PSpice --- microgrid control --- total harmonic distortion --- grid-connected inverter --- dynamic PV model --- fuzzy --- boost converter --- SiC PV Supply --- voltage doubling --- nonlinear control --- distributed control --- power system operation and control --- one phase open circuit fault (1-Ph) --- direct torque control (DTC) --- battery modeling --- non-linear phenomena --- frequency-domain analysis --- advanced controllers --- vector control --- fixed-frequency double integral sliding-mode (FFDISM) --- power converters --- modulation index --- DC-DC buck converter --- small signal stability analysis --- active equalization --- voltage source inverter --- hardware-in-the-loop --- current source --- synchronization --- grid-connected VSI --- synchronous generator --- fault tolerant control --- DC-DC converters --- DC-DC conversion --- AC-DC power converters


Book
Applications of Power Electronics.
Authors: --- ---
ISBN: 3038979759 3038979740 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Power electronics technology is still an emerging technology, and it has found its way into many applications, from renewable energy generation (i.e., wind power and solar power) to electrical vehicles (EVs), biomedical devices, and small appliances, such as laptop chargers. In the near future, electrical energy will be provided and handled by power electronics and consumed through power electronics; this not only will intensify the role of power electronics technology in power conversion processes, but also implies that power systems are undergoing a paradigm shift, from centralized distribution to distributed generation. Today, more than 1000 GW of renewable energy generation sources (photovoltaic (PV) and wind) have been installed, all of which are handled by power electronics technology. The main aim of this book is to highlight and address recent breakthroughs in the range of emerging applications in power electronics and in harmonic and electromagnetic interference (EMI) issues at device and system levels as discussed in ?robust and reliable power electronics technologies, including fault prognosis and diagnosis technique stability of grid-connected converters and ?smart control of power electronics in devices, microgrids, and at system levels.

Keywords

Q-factor --- lithium-ion power battery pack --- electromagnetic field (EMF) --- expert systems --- total harmonic distortion (THD) --- current-fed inverter --- rotor design --- class-D amplifier --- LCL-S topology --- current switching ripple --- system in package --- energy storage modelling --- smart micro-grid --- embedded systems --- equivalent inductance --- SHIL --- permanent magnet --- static var generator (SVG) --- permanent magnet synchronous motor (PMSM) --- control strategy and algorithm --- digital control --- zero-voltage switching (ZVS) --- SOC estimator --- electric power --- optimal design --- electromagnetic field interference (EMI) --- line frequency instability --- analog phase control --- five-phase permanent magnet synchronous machine --- distribution generation --- leakage inductance --- adjacent two-phase open circuit fault (A2-Ph) --- chaotic PWM --- electric vehicles --- CMOS chaotic circuit --- series active filter --- cascaded topology --- total demand distortion --- efficiency motor --- triangular ramp generator --- 4T analog MOS control --- inductive coupling --- induction machines --- nanocrystalline core --- semi-active bridge --- multi-level control --- simulation models --- voltage source inverters (VSI) --- battery management system BMS --- voltage source converter --- current control loops --- droop control --- particle swarm optimization --- variable control gain --- state of charge SoC --- extended Kalman filter --- transient control --- multi-objective optimization --- composite equalizer --- converter --- DHIL --- five-leg voltage source inverter --- axial flux machines --- bifurcation --- active receivers --- field programmable gate array --- Nyquist stability analysis --- electric vehicle --- static compensator --- stability --- common-mode inductor --- DC–DC converters --- support vector machines --- electromagnetic compatibility --- real-time simulation --- passive equalization --- matrix converters --- wireless power transfer --- digital phase control --- compensation topology --- volt-per-hertz control (scalar control) --- switching losses --- voltage control --- hybrid converter --- bidirectional converter --- coupling factor --- selective harmonic elimination method --- power electronics --- soft switching --- optimization design --- multilevel inverter --- five-phase machine --- phase-shift control --- lithium-ion battery --- voltage boost --- VPI active damping control --- parameter identification --- electrical engineering communications --- current control --- DC–DC conversion --- battery management system --- GaN cascode --- single-switch --- high-frequency modeling --- synchronous motor --- power quality --- water purification --- power factor correction (PFC) --- composite active vectors modulation (CVM) --- digital signal controller --- line start --- power density --- hardware in loop --- n/a --- fault diagnosis --- multi-level converter (MLC) --- induction motor --- dual three-phase (DTP) permanent magnet synchronous motors (PMSMs) --- neural networks --- electromagnetic interference filter --- battery chargers --- power converter --- harmonics --- multiphase space vector modulation --- torque ripple --- power factor correction --- electrical drives --- modular multilevel converter (MMC) --- active power filter --- double layer capacitor (DLC) models --- PMSG --- response time --- resonator structure --- floating-point --- effect factors --- DC-link voltage control --- sliding mode control --- phasor model technique --- wireless power transfer (WPT) --- slim DC-link drive --- fault-tolerant control --- lithium-ion batteries --- DC-AC power converters --- conducting angle determination (CAD) techniques --- variable speed pumped storage system --- impedance-based model --- one cycle control --- renewable energy sources --- series-series compensation --- cogging torque --- active rectifiers --- three-level boost converter (TLBC) --- DC-link cascade H-bridge (DCLCHB) inverter --- battery energy storage systems --- filter --- power management system --- improved extended Kalman filter --- dead-time compensation --- disturbance observer --- reference phase calibration --- frequency locking --- space vector pulse width modulation (SVPWM) --- predictive controllers --- nine switch converter --- transmission line --- spread-spectrum technique --- energy storage --- electromagnetic interference --- renewable energy resources control --- harmonic linearization --- misalignment --- plug-in hybrid electric vehicles --- high level programing --- nearest level modulation (NLM) --- magnetic equivalent circuit --- EMI filter --- permanent-magnet machines --- real-time emulation --- switched capacitor --- back EMF --- fixed-point --- HF-link MPPT converter --- condition monitoring --- WPT standards --- switching frequency --- switching frequency modelling --- high frequency switching power supply --- field-programmable gate array --- three-phase bridgeless rectifier --- ice melting --- AC–DC power converters --- hybrid power filter --- PSpice --- microgrid control --- total harmonic distortion --- grid-connected inverter --- dynamic PV model --- fuzzy --- boost converter --- SiC PV Supply --- voltage doubling --- nonlinear control --- distributed control --- power system operation and control --- one phase open circuit fault (1-Ph) --- direct torque control (DTC) --- battery modeling --- non-linear phenomena --- frequency-domain analysis --- advanced controllers --- vector control --- fixed-frequency double integral sliding-mode (FFDISM) --- power converters --- modulation index --- DC-DC buck converter --- small signal stability analysis --- active equalization --- voltage source inverter --- hardware-in-the-loop --- current source --- synchronization --- grid-connected VSI --- synchronous generator --- fault tolerant control --- DC-DC converters --- DC-DC conversion --- AC-DC power converters

Listing 1 - 10 of 20 << page
of 2
>>
Sort by