Narrow your search

Library

ULiège (30)

FARO (11)

KU Leuven (11)

LUCA School of Arts (11)

Odisee (11)

Thomas More Kempen (11)

Thomas More Mechelen (11)

UCLL (11)

UGent (11)

ULB (11)

More...

Resource type

book (29)

dissertation (1)


Language

English (30)


Year
From To Submit

2022 (4)

2021 (7)

2020 (13)

2019 (5)

2018 (1)

Listing 1 - 10 of 30 << page
of 3
>>
Sort by

Dissertation
Master thesis : Microstructure prediction of Ti6Al4V processed by Laser Cladding
Authors: --- --- --- --- --- et al.
Year: 2018 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Abstract &#13;Titanium is the fourth most abundant structural metal in the world. It is known to have a high strength, light weight, good formability and high corrosion resistance. Due to these properties, Titanium and its alloys are used in many industries, such as aerospace and automobile. Note that due to its high price, one can find Ti6Al4V in demanding applications. &#13;This master thesis defines quantitatively predicting of the microstructure of a titanium alloy, Ti6Al4V, worked with laser cladding process. The main goal is to define the proper phase transformation conditions that lead to reliable phase predictions. &#13;Outcomes are checked from the results obtained by two experimental observations in laser cladding process for the Ti6Al4V. Both studies obtained qualitative results according to the phases that formed the microstructure of the alloy and the hardness value of three different points located in the deposits. As a first reference, H.S. Tran used Constant Track Length building strategy. The second study has been made by MMS team at University of Liège, but it has not been published yet. They used a Decrease Track Length building strategy. The initial experimental work was done by H.Paydas .&#13;This master thesis is based on the implementation of a Fortran code that defines the phase transformations of Ti6Al4V. Inside the code, the thermal conditions and the equations with their parameters are defined. The project was based on Crespo’s model that calculates the phase transformation kinetics of this titanium alloy. After applying the same model, some differences have been made in order to achieve the desired results according to the improvement works done by H.S Tran and MMS team. &#13;This document presents a flow work starting with the basic theoretical background about Additive Manufacturing, Titanium and its alloys. After, Ti6Al4V is presented: its chemical composition, the different phases that can describe its microstructure and the equations that define the transformations from one phase to the other. The parameters and conditions defining those equations are determined and compared with previous literature, concretely with Crespo. Finally the results and conclusions are presented. &#13;Keywords: Laser Cladding (LC), Ti6Al4V, microstructure, thermal history, Fortran.


Book
Design and Applications of Additive Manufacturing and 3D Printing
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Additive manufacturing (AM), more commonly known as 3D printing, has grown trememdously in recent years. It has shown its potential uses in the medical, automotive, aerospace, and spare part sectors. Personal manufacturing, complex and optimized parts, short series manufacturing, and local on-demand manufacturing are just some of its current benefits. The development of new materials and equipment has opened up new application possibilities, and equipment is quicker and cheaper to use when utilizing the new materials launched by vendors and material developers. AM has become more critical for the industry but also for academics. Since AM offers more design freedom than any other manufacturing process, it provides designers with the challenge of designing better and more efficient products.


Book
3D Printing of Metals
Author:
ISBN: 3039213423 3039213415 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

3D printing is rapidly emerging as a key manufacturing technique that is capable of serving a wide spectrum of applications, ranging from engineering to biomedical sectors. Its ability to form both simple and intricate shapes through computer-controlled graphics enables it to create a niche in the manufacturing sector. Key challenges remain, and a great deal of research is required to develop 3D printing technology for all classes of materials including polymers, metals, ceramics, and composites. In view of the growing importance of 3D manufacturing worldwide, this Special Issue aims to seek original articles to further assist in the development of this promising technology from both scientific and technological perspectives. Targeted reviews, including mini-reviews, are also welcome, as they play a crucial role in educating students and young researchers.


Book
Multifunctional Oxide-Based Materials: From Synthesis to Application
Authors: ---
ISBN: 3039213989 3039213970 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute


Book
Self-Assembly of Polymers
Authors: ---
ISBN: 3039285076 3039285068 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, polymer self-assembly has become extremely attractive for both biological (drug delivery, tissue engineering, scaffolds) and non-biological (packaging, semiconductors) applications. In nature, a number of key biological processes are driven by polymer self-assembly, for instance protein folding. Impressive morphologies can be assembled from polymers thanks to a diverse range of interactions involved, e.g., electrostatics, hydrophobic, hots-guest interactions, etc. Both 2D and 3D tailor-made assemblies can be designed through modern powerful techniques and approaches such as the layer-by-layer and the Langmuir-Blodgett deposition, hard and soft templating. This Special Issue highlights contributions (research papers, short communications, review articles) that focus on recent developments in polymer self-assembly for both fundamental understanding the assembly phenomenon and real applications.


Book
Biomaterial-Related Infections
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The use of medical devices (e.g., catheters, implants, and probes) is a common and essential part of medical care for both diagnostic and therapeutic purposes. However, these devices quite frequently lead to the incidence of infections due to the colonization of their abiotic surfaces by biofilm-growing microorganisms, which are progressively resistant to antimicrobial therapies. Several methods based on anti-infective biomaterials that repel microbes have been developed to combat device-related infections. Among these strategies, surface coating with antibiotics (e.g., beta-lactams), natural compounds (e.g., polyphenols), or inorganic elements (e.g., silver and copper nanoparticles) has been widely recognized as exhibiting broad-spectrum bactericidal or bacteriostatic activity. So, in order to achieve a better therapeutic response, it is crucial to understand how these infections are different from others. This will allow us to find new biomaterials characterized by antifouling coatings with repellent properties or low adhesion towards microorganisms, or antimicrobial coatings that are capable of killing microbes approaching the surface, improving biomaterial functionalization strategies and supporting tissues’ bio-integration.

Keywords

Medicine --- Candida --- biofilms --- diabetes --- medical devices --- candidiasis --- metabolic disorder --- hyperglycemia --- infection --- Candida glabrata --- candidemia --- echinocandins --- resistance --- micafungin --- caspofungin --- in vivo --- titanium dioxide --- nanotubes --- autoclaving --- titanium alloy --- biocompatibility --- wettability --- mechanical properties --- silver nanoparticles --- titanium dioxide nanotubes --- silver ions release --- biointegration --- antimicrobial activity --- polyethylene terephthalate --- PET --- electrospinning --- nanofibers --- antimicrobial agents --- Taguchi method --- antimicrobial efficiency --- cold atmospheric-pressure plasma jet (CAPJ) --- Escherichia coli --- DNA double-strand breaks --- scanning electron microscopy --- Ti6Al4V implants --- anodization process --- XPS --- genotoxicity assessment --- anti-inflammatory properties --- oral biofilm --- infection control --- Streptococcus mutans --- Candida spp. --- natural compounds --- antimicrobial resistance --- Candida --- biofilms --- diabetes --- medical devices --- candidiasis --- metabolic disorder --- hyperglycemia --- infection --- Candida glabrata --- candidemia --- echinocandins --- resistance --- micafungin --- caspofungin --- in vivo --- titanium dioxide --- nanotubes --- autoclaving --- titanium alloy --- biocompatibility --- wettability --- mechanical properties --- silver nanoparticles --- titanium dioxide nanotubes --- silver ions release --- biointegration --- antimicrobial activity --- polyethylene terephthalate --- PET --- electrospinning --- nanofibers --- antimicrobial agents --- Taguchi method --- antimicrobial efficiency --- cold atmospheric-pressure plasma jet (CAPJ) --- Escherichia coli --- DNA double-strand breaks --- scanning electron microscopy --- Ti6Al4V implants --- anodization process --- XPS --- genotoxicity assessment --- anti-inflammatory properties --- oral biofilm --- infection control --- Streptococcus mutans --- Candida spp. --- natural compounds --- antimicrobial resistance


Book
Plasmas Processes Applied on Metals and Alloys
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book focuses on recent advances in plasma technology and its application to metals, alloys, and related materials. Surface modifications, material syntheses, cutting and surface coatings are performed using low-pressure plasma or atmospheric-pressure plasma. The contributions of this book include the discussion of a wide scope of plasma technologies applied to materials. Plasma is a versatile tool that can be applied in many types of material processing. New material processing applications of plasmas and new plasma technologies are being developed rapidly. We hope that this book can contribute new knowledge to the plasma material research society.

Keywords

Technology: general issues --- cathodic plasma electrolysis deposition --- Al2O3 coating --- oxidation --- solution surface tension --- nitrogen plasma --- Ga droplet --- GaN nanodot --- transmission electron microscopy --- wurtzite --- Zinc-blende --- plasma cutting --- cut heat affected zone --- mini-tensile test --- steel plate --- residual stress --- atmospheric pressure plasma jet --- platinum --- tin oxide --- dye-sensitized solar cells --- chloroplatinic acid --- tin chloride --- self-lubricating --- composite coating --- titanium --- plasma electrolytic oxidation (PEO) --- polytetrafluoroethylene (PTFE) --- plasma nitriding --- atmospheric-pressure plasma --- nitrogen dose amount --- hydrogen fraction --- void --- Ti6Al4V lattice structure --- Ag-doped TiO2 anatase --- spark plasma sintering --- selective laser melting --- additive manufacturing --- antibacterial and photoactivity applications --- aluminum --- surface --- plasma --- nitrogen --- postdischarge --- atmospheric pressure --- wettability --- organic-inorganic halide perovskite --- air plasma --- plasma treatment --- optoelectronic properties --- morphology --- cathodic plasma electrolysis deposition --- Al2O3 coating --- oxidation --- solution surface tension --- nitrogen plasma --- Ga droplet --- GaN nanodot --- transmission electron microscopy --- wurtzite --- Zinc-blende --- plasma cutting --- cut heat affected zone --- mini-tensile test --- steel plate --- residual stress --- atmospheric pressure plasma jet --- platinum --- tin oxide --- dye-sensitized solar cells --- chloroplatinic acid --- tin chloride --- self-lubricating --- composite coating --- titanium --- plasma electrolytic oxidation (PEO) --- polytetrafluoroethylene (PTFE) --- plasma nitriding --- atmospheric-pressure plasma --- nitrogen dose amount --- hydrogen fraction --- void --- Ti6Al4V lattice structure --- Ag-doped TiO2 anatase --- spark plasma sintering --- selective laser melting --- additive manufacturing --- antibacterial and photoactivity applications --- aluminum --- surface --- plasma --- nitrogen --- postdischarge --- atmospheric pressure --- wettability --- organic-inorganic halide perovskite --- air plasma --- plasma treatment --- optoelectronic properties --- morphology


Book
Tube and Sheet Metal Forming Processes and Applications
Authors: ---
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

At present, the manufacturing industry is focused on the production of lighter weight components with better mechanical properties and always fulfilling all the environmental requirements. These challenges have caused a need for developing manufacturing processes in general, including obviously those devoted in particular to the development of thin-walled metallic shapes, as is the case with tubular and sheet metal parts and devices.This Special Issue is thus devoted to research in the fields of sheet metal forming and tube forming, and their applications, including both experimental and numerical approaches and using a variety of scientific and technological tools, such as forming limit diagrams (FLDs), analysis on formability and failure, strain analysis based on circle grids or digital image correlation (DIC), and finite element analysis (FEA), among others.In this context, we are pleased to present this Special Issue dealing with recent studies in the field of tube and sheet metal forming processes and their main applications within different high-tech industries, such as the aerospace, automotive, or medical sectors, among others.

Keywords

Technology --- Engineering --- micro tube --- hollow sinking --- plastic anisotropy --- surface quality --- size effect --- plasticity --- strength --- metallic tubes --- finite element analysis --- accumulative extrusion bonding --- kinematic bending --- product properties --- local heating --- profile bending --- asymmetric profile --- warping --- superimposed hydrostatic pressure --- shear damage growth --- fracture strain --- finite element analysis (FEA) --- additive manufacturing --- rapid prototyping --- sheet metal forming --- V-bending --- groove pressing --- HA-SPIF --- surface finish --- machine learning --- Ti6Al4V --- R-value --- thickness strain --- digital image correlation --- multi-camera DIC --- non-destructive testing --- single point incremental forming --- tube expansion --- formability --- fracture --- stress-triaxiality --- strain-hardening --- viscoplasticity --- bending --- semi-analytic solution --- Ti-6Al-4V ELI --- superplastic forming --- custom prosthesis --- in vivo tests --- History. --- History. --- micro tube --- hollow sinking --- plastic anisotropy --- surface quality --- size effect --- plasticity --- strength --- metallic tubes --- finite element analysis --- accumulative extrusion bonding --- kinematic bending --- product properties --- local heating --- profile bending --- asymmetric profile --- warping --- superimposed hydrostatic pressure --- shear damage growth --- fracture strain --- finite element analysis (FEA) --- additive manufacturing --- rapid prototyping --- sheet metal forming --- V-bending --- groove pressing --- HA-SPIF --- surface finish --- machine learning --- Ti6Al4V --- R-value --- thickness strain --- digital image correlation --- multi-camera DIC --- non-destructive testing --- single point incremental forming --- tube expansion --- formability --- fracture --- stress-triaxiality --- strain-hardening --- viscoplasticity --- bending --- semi-analytic solution --- Ti-6Al-4V ELI --- superplastic forming --- custom prosthesis --- in vivo tests


Book
Impact Welding of Materials
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Recent industrial criteria increasingly require the production of multi-material components. However, the manufacturing requirements of these components are not met by conventional welding techniques. Alternative solid-state technologies, such as impact-based processes, must be considered. The impact welding family is composed of several processes, such as explosion welding, magnetic pulse welding, vaporizing foil actuator welding, and laser impact welding. These processes present very different length scales, providing the impact welding family with a broad applicability range. A sample of the cutting-edge research that is being conducted on the multidisciplinary field of impact welding is presented in this book.

Keywords

Technology: general issues --- dissimilar materials --- interlayer --- vaporizing foil actuators welding --- impact welding --- impact velocity --- impact angle --- welding interface --- flyer velocity --- energy efficiency --- peak velocity --- flyer rebound --- flyer size --- confinement layer --- explosive welding --- Ti6Al4V/Al-1060 --- microstructure --- mechanical properties --- smooth particle hydrodynamic (SPH) --- high-velocity impact welding --- smoothed particle hydrodynamics simulation --- welding window --- gelatin --- thin aluminum plate --- magnesium alloys --- LPSO phase --- cellular metal --- composite structure --- unidirectional cellular metal --- explosive compaction --- high-energy-rate forming --- tantalum/copper/stainless steel clads --- severe plastic deformation --- SEM/EBSD --- microhardness --- magnetic pulse welding --- dissimilar metals --- surface preparation --- interface --- aluminum --- carbon steel --- stainless steel --- collision welding --- pressure welding --- process glare --- jet --- cloud of particles --- shock compression --- surface roughness --- collision conditions --- model test rig --- welding mechanisms --- dissimilar materials --- interlayer --- vaporizing foil actuators welding --- impact welding --- impact velocity --- impact angle --- welding interface --- flyer velocity --- energy efficiency --- peak velocity --- flyer rebound --- flyer size --- confinement layer --- explosive welding --- Ti6Al4V/Al-1060 --- microstructure --- mechanical properties --- smooth particle hydrodynamic (SPH) --- high-velocity impact welding --- smoothed particle hydrodynamics simulation --- welding window --- gelatin --- thin aluminum plate --- magnesium alloys --- LPSO phase --- cellular metal --- composite structure --- unidirectional cellular metal --- explosive compaction --- high-energy-rate forming --- tantalum/copper/stainless steel clads --- severe plastic deformation --- SEM/EBSD --- microhardness --- magnetic pulse welding --- dissimilar metals --- surface preparation --- interface --- aluminum --- carbon steel --- stainless steel --- collision welding --- pressure welding --- process glare --- jet --- cloud of particles --- shock compression --- surface roughness --- collision conditions --- model test rig --- welding mechanisms

Listing 1 - 10 of 30 << page
of 3
>>
Sort by