Narrow your search

Library

KU Leuven (8)

ULiège (8)

UGent (7)

UAntwerpen (5)

UCLouvain (4)

VUB (4)

UHasselt (3)

UMons (3)

UNamur (3)

ULB (2)


Resource type

book (8)


Language

English (8)


Year
From To Submit

1988 (1)

1984 (1)

1981 (2)

1978 (1)

1977 (1)

More...
Listing 1 - 8 of 8
Sort by

Book
Spectral theory of operators in Hilbert space
Author:
ISBN: 0387900764 0045100519 3540900764 1461263964 9780387900766 Year: 1973 Volume: 9 Publisher: New York


Book
Harmonic analysis of operators on Hilbert spaces
Authors: ---
ISBN: 0720420350 0444100466 9780720420357 Year: 1970 Publisher: Amsterdam : Budapest : North-Holland Publishing Company ; Akadémiai Kiadó,


Book
Sequences and series in Banach spaces
Author:
ISBN: 0387908595 3540908595 1461297346 1461252008 9780387908595 Year: 1984 Volume: 92 Publisher: New York


Book
Extreme eigenvalues of Toeplitz operators
Authors: ---
ISBN: 3540071474 0387071474 3540374396 9780387071473 9783540071471 Year: 1977 Volume: 618 Publisher: Berlin

Spectral theory of linear operators
Author:
ISBN: 0122209508 9780122209505 Year: 1978 Volume: 12 Publisher: London Academic Press

The spectral theory of Toeplitz operators
Authors: ---
ISBN: 0691082847 0691082790 1400881447 9780691082844 Year: 1981 Volume: 99 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

The theory of Toeplitz operators has come to resemble more and more in recent years the classical theory of pseudodifferential operators. For instance, Toeplitz operators possess a symbolic calculus analogous to the usual symbolic calculus, and by symbolic means one can construct parametrices for Toeplitz operators and create new Toeplitz operators out of old ones by functional operations.If P is a self-adjoint pseudodifferential operator on a compact manifold with an elliptic symbol that is of order greater than zero, then it has a discrete spectrum. Also, it is well known that the asymptotic behavior of its eigenvalues is closely related to the behavior of the bicharacteristic flow generated by its symbol.It is natural to ask if similar results are true for Toeplitz operators. In the course of answering this question, the authors explore in depth the analogies between Toeplitz operators and pseudodifferential operators and show that both can be viewed as the "quantized" objects associated with functions on compact contact manifolds.

Keywords

Operator theory --- Toeplitz operators --- Spectral theory (Mathematics) --- 517.984 --- Spectral theory of linear operators --- Toeplitz operators. --- Spectral theory (Mathematics). --- 517.984 Spectral theory of linear operators --- Operators, Toeplitz --- Linear operators --- Functional analysis --- Hilbert space --- Measure theory --- Transformations (Mathematics) --- Algebraic variety. --- Asymptotic analysis. --- Asymptotic expansion. --- Big O notation. --- Boundary value problem. --- Change of variables. --- Chern class. --- Codimension. --- Cohomology. --- Compact group. --- Complex manifold. --- Complex vector bundle. --- Connection form. --- Contact geometry. --- Corollary. --- Cotangent bundle. --- Curvature form. --- Diffeomorphism. --- Differentiable manifold. --- Dimensional analysis. --- Discrete spectrum. --- Eigenvalues and eigenvectors. --- Elaboration. --- Elliptic operator. --- Embedding. --- Equivalence class. --- Existential quantification. --- Exterior (topology). --- Fourier integral operator. --- Fourier transform. --- Hamiltonian vector field. --- Holomorphic function. --- Homogeneous function. --- Hypoelliptic operator. --- Integer. --- Integral curve. --- Integral transform. --- Invariant subspace. --- Lagrangian (field theory). --- Lagrangian. --- Limit point. --- Line bundle. --- Linear map. --- Mathematics. --- Metaplectic group. --- Natural number. --- Normal space. --- One-form. --- Open set. --- Operator (physics). --- Oscillatory integral. --- Parallel transport. --- Parameter. --- Parametrix. --- Periodic function. --- Polynomial. --- Projection (linear algebra). --- Projective variety. --- Pseudo-differential operator. --- Q.E.D. --- Quadratic form. --- Quantity. --- Quotient ring. --- Real number. --- Scientific notation. --- Self-adjoint. --- Smoothness. --- Spectral theorem. --- Spectral theory. --- Square root. --- Submanifold. --- Summation. --- Support (mathematics). --- Symplectic geometry. --- Symplectic group. --- Symplectic manifold. --- Symplectic vector space. --- Tangent space. --- Theorem. --- Todd class. --- Toeplitz algebra. --- Toeplitz matrix. --- Toeplitz operator. --- Trace formula. --- Transversal (geometry). --- Trigonometric functions. --- Variable (mathematics). --- Vector bundle. --- Vector field. --- Vector space. --- Volume form. --- Wave front set. --- Opérateurs pseudo-différentiels

Mathematical analysis and numerical methods for science and technology
Authors: --- --- --- --- --- et al.
ISBN: 3540190457 3540660984 3540660992 354066100X 3540661018 3540661026 3540660976 3540502068 3642580041 354050205X 3642580904 3540502076 3642615279 3540502084 3642615295 3540502092 3642615317 364261566X Year: 1988 Publisher: Berlin : Springer-Verlag,

Loading...
Export citation

Choose an application

Bookmark

Abstract

299 G(t), and to obtain the corresponding properties of its Laplace transform (called the resolvent of - A) R(p) = (A + pl)-l , whose existence is linked with the spectrum of A. The functional space framework used will be, for simplicity, a Banach space(3). To summarise, we wish to extend definition (2) for bounded operators A, i.e. G(t) = exp( - tA) , to unbounded operators A over X, where X is now a Banach space. Plan of the Chapter We shall see in this chapter that this enterprise is possible, that it gives us in addition to what is demanded above, some supplementary information in a number of areas: - a new 'explicit' expression of the solution; - the regularity of the solution taking into account some conditions on the given data (u , u1,f etc ... ) with the notion of a strong solution; o - asymptotic properties of the solutions. In order to treat these problems we go through the following stages: in § 1, we shall study the principal properties of operators of semigroups {G(t)} acting in the space X, particularly the existence of an upper exponential bound (in t) of the norm of G(t). In §2, we shall study the functions u E X for which t --+ G(t)u is differentiable.

Keywords

517.9 --- 517.5 --- 517.4 --- 51-7 --- 51-7 Mathematical studies and methods in other sciences. Scientific mathematics. Actuarial mathematics. Biometrics. Econometrics etc. --- Mathematical studies and methods in other sciences. Scientific mathematics. Actuarial mathematics. Biometrics. Econometrics etc. --- 517.4 Functional determinants. Integral transforms. Operational calculus --- Functional determinants. Integral transforms. Operational calculus --- 517.5 Theory of functions --- Theory of functions --- 517.9 Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis --- Differential equations. Integral equations. Other functional equations. Finite differences. Calculus of variations. Functional analysis --- Mathematical analysis. --- Numerical analysis. --- 517.984 --- 517.984 Spectral theory of linear operators --- Spectral theory of linear operators --- #KVIV:BB --- 519.6 --- 681.3 *G18 --- 681.3*G19 --- 681.3*G19 Integral equations: Fredholm equations; integro-differential equations; Volterra equations (Numerical analysis) --- Integral equations: Fredholm equations; integro-differential equations; Volterra equations (Numerical analysis) --- 681.3 *G18 Partial differential equations: difference methods; elliptic equations; finite element methods; hyperbolic equations; method of lines; parabolic equations (Numerical analysis) --- Partial differential equations: difference methods; elliptic equations; finite element methods; hyperbolic equations; method of lines; parabolic equations (Numerical analysis) --- 519.6 Computational mathematics. Numerical analysis. Computer programming --- Computational mathematics. Numerical analysis. Computer programming --- 519.63 --- 519.63 Numerical methods for solution of partial differential equations --- Numerical methods for solution of partial differential equations --- Mathematical analysis --- Numerical analysis --- Analyse mathématique --- Analyse numérique --- Partial differential equations. --- Partial Differential Equations. --- Numerical Analysis. --- Partial differential equations --- Chemometrics. --- Computational intelligence. --- Applied mathematics. --- Engineering mathematics. --- Mathematical physics. --- Math. Applications in Chemistry. --- Computational Intelligence. --- Mathematical and Computational Engineering. --- Theoretical, Mathematical and Computational Physics. --- Physical mathematics --- Physics --- Engineering --- Engineering analysis --- Intelligence, Computational --- Artificial intelligence --- Soft computing --- Chemistry, Analytic --- Analytical chemistry --- Chemistry --- Mathematics --- Measurement --- Statistical methods --- System theory. --- Calculus of variations. --- Systems Theory, Control. --- Calculus of Variations and Optimal Control; Optimization. --- Isoperimetrical problems --- Variations, Calculus of --- Maxima and minima --- Systems, Theory of --- Systems science --- Science --- Philosophy --- Mechanics. --- Classical Mechanics. --- Classical mechanics --- Newtonian mechanics --- Dynamics --- Quantum theory --- Analysis (Mathematics). --- Analysis. --- 517.1 Mathematical analysis

Listing 1 - 8 of 8
Sort by