Listing 1 - 3 of 3 |
Sort by
|
Choose an application
In the last ten years neural ensemble recording grew into a well-respected and highly data-lucrative science. New experimental paradigms, including the fabrication of high-density microelectrodes, new surgical implantation techniques, multi-channel signal processing, and the establishment of direct real-time brain-machine interfaces, hold promise not just for neurophysiology research, but also for new-generation prosthetic devices aimed at restoring mobility and communication skills in severely disabled patients.Extensively updated and expanded, Methods for Neural Ensemble Recording, S
Electroencephalography. --- Microelectrodes. --- Neurons. --- Nerve cells --- Neurocytes --- Miniature electrodes --- EEG --- Encephalography --- Cells --- Nervous system --- Electrodes --- Brain --- Electrodiagnosis --- Electrophysiology --- Visual evoked response --- Diseases --- Diagnosis
Choose an application
Histology. Cytology --- Microelectrodes --- Electrodes, Ion selective --- Cytology --- Cytological Techniques --- Technique --- Cytological Techniques. --- -Electrodes, Ion selective --- Miniature electrodes --- Electrodes --- Ion selective electrodes --- Ion sensitive electrodes --- Specific ion electrodes --- Electrochemical analysis --- Ion-permeable membranes --- Cell biology --- Cellular biology --- Biology --- Cells --- Cytologists --- Cytologic Technics --- Cytological Technic --- Cytological Technics --- Cytological Technique --- Technic, Cytological --- Technics, Cytological --- Technique, Cytological --- Techniques, Cytological --- Cytologic Technic --- Technic, Cytologic --- Technics, Cytologic --- Cell Biology --- methods --- Electrodes, Ion selective. --- Microelectrodes. --- Technique. --- Electrodes. --- Cytology - Technique
Choose an application
Neural electrodes enable the recording and stimulation of bioelectrical activity in the nervous system. This technology provides neuroscientists with the means to probe the functionality of neural circuitry in both health and disease. In addition, neural electrodes can deliver therapeutic stimulation for the relief of debilitating symptoms associated with neurological disorders such as Parkinson’s disease and may serve as the basis for the restoration of sensory perception through peripheral nerve and brain regions after disease or injury. Lastly, microscale neural electrodes recording signals associated with volitional movement in paralyzed individuals can be decoded for controlling external devices and prosthetic limbs or driving the stimulation of paralyzed muscles for functional movements. In spite of the promise of neural electrodes for a range of applications, chronic performance remains a goal for long-term basic science studies, as well as clinical applications. New perspectives and opportunities from fields including tissue biomechanics, materials science, and biological mechanisms of inflammation and neurodegeneration are critical to advances in neural electrode technology. This Special Issue will address the state-of-the-art knowledge and emerging opportunities for the development and demonstration of advanced neural electrodes.
n/a --- closed-loop --- in vivo imaging --- education --- thermoresistance --- neural probe --- electroless plating --- neural stimulation and recording --- peripheral nerve stimulation --- shape-memory-polymer --- artifact --- sensor interface --- magnetic coupling --- neuroprosthetics --- intracortical implant --- µECoG --- neural interfaces --- implantable --- electrochemistry --- shape memory polymer --- neuroscience --- micromachine --- microelectromechanical systems --- stiffness --- Parylene C --- intracranial electrodes --- chronic implantation --- neural interfacing --- microelectrodes --- multiplexing --- microstimulators --- freely-behaving --- windowed integration sampling --- system-on-chip --- brain-machine interfaces --- insertion force --- microelectrode array --- vagus nerve --- diversity --- micro-electromechanical systems (MEMS) technologies --- mixed-signal feedback --- temperature monitoring --- foreign body reaction --- peripheral nerves --- brain–computer interface --- multi-disciplinary --- neurotechnology --- photolithography --- micro-electrocorticography --- robust microelectrode --- conscious recording --- electrode array --- dopamine --- softening --- sciatic nerve --- bio-inspired --- neural prostheses --- neuroscientific research --- bidirectional --- LED chip --- microfluidic device --- electrode–tissue interface --- impedance --- intracortical --- silicon carbide --- three-dimensional --- bias --- micro-electromechanical systems (MEMS) --- silicon neural probes --- electrode degradation --- chronic --- microelectrode --- biocompatibility --- optogenetics --- fast-scan cyclic voltammetry (FSCV) --- glial encapsulation --- deep brain stimulation --- electrocorticography --- electrophysiology --- fast scan cyclic voltammetry --- precision medicine --- microfabrication --- BRAIN Initiative --- polymer --- magnetic resonance imaging --- polymer nanocomposite --- liquid crystal elastomer --- silicon probe --- training --- tissue response --- graphene --- electrode --- glassy carbon electrode --- immune response --- electrode implantation --- dextran --- immunohistochemistry --- neural interface response --- amorphous silicon carbide --- Utah electrode arrays --- neural amplifier --- neural electrode array --- neuromodulation --- in vivo electrophysiology --- neuronal recordings --- neural recording --- ECoG --- gene modification --- neural interface --- wireless --- enteric nervous system --- cellulose nanocrystals --- brain-computer interface --- electrode-tissue interface
Listing 1 - 3 of 3 |
Sort by
|