Listing 1 - 10 of 33 | << page >> |
Sort by
|
Choose an application
Algebraic geometry --- Number theory --- Functions, Elliptic --- Fonctions elliptiques --- Functions, Theta --- Fonctions thêta --- Elliptic functions. --- Functions, Theta. --- Fonctions thêta. --- Fonctions d'une variable complexe --- Fonctions elliptiques. --- Riemann, Surfaces de.
Choose an application
In its first six chapters this 2006 text seeks to present the basic ideas and properties of the Jacobi elliptic functions as an historical essay, an attempt to answer the fascinating question: 'what would the treatment of elliptic functions have been like if Abel had developed the ideas, rather than Jacobi?' Accordingly, it is based on the idea of inverting integrals which arise in the theory of differential equations and, in particular, the differential equation that describes the motion of a simple pendulum. The later chapters present a more conventional approach to the Weierstrass functions and to elliptic integrals, and then the reader is introduced to the richly varied applications of the elliptic and related functions. Applications spanning arithmetic (solution of the general quintic, the functional equation of the Riemann zeta function), dynamics (orbits, Euler's equations, Green's functions), and also probability and statistics, are discussed.
Choose an application
A comprehensive treatment of elliptic functions is linked by these notes to a study of their application to elliptic curves. This approach provides geometers with the opportunity to acquaint themselves with aspects of their subject virtually ignored by other texts. The exposition is clear and logically carries themes from earlier through to later topics. This enthusiastic work of scholarship is made complete with the inclusion of some interesting historical details and a very comprehensive bibliography.
Elliptic functions. --- Curves, Elliptic. --- Elliptic curves --- Curves, Algebraic --- Elliptic integrals --- Functions, Elliptic --- Integrals, Elliptic --- Transcendental functions --- Functions of complex variables --- Integrals, Hyperelliptic --- Curves, Algebraic.
Choose an application
Algebraic geometry --- Number theory --- 517.58 --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- 517.58 Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Fonctions speciales --- Fonctions elliptiques
Choose an application
Mathematical analysis --- Numerical approximation theory --- Functions, Special --- Congresses --- 517.58 --- -#TCPW W6.0 --- Special functions --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Conferences - Meetings --- Congresses. --- 517.58 Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- #TCPW W6.0 --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials --- Fonctions spéciales --- Fonctions spéciales. --- Functions, Special - Congresses --- Fonctions spéciales.
Choose an application
This revised and expanded new edition will continue to meet the needs for an authoritative, up-to-date, self contained, and comprehensive account of the rapidly growing field of basic hypergeometric series, or q-series. Simplicity, clarity, deductive proofs, thoughtfully designed exercises, and useful appendices are among its strengths. The first five chapters cover basic hypergeometric series and integrals, whilst the next five are devoted to applications in various areas including Askey-Wilson integrals and orthogonal polynomials, partitions in number theory, multiple series, orthogonal polynomials in several variables, and generating functions. Chapters 9-11 are new for the second edition, the final chapter containing a simplified version of the main elements of the theta and elliptic hypergeometric series as a natural extension of the single-base q-series. Some sections and exercises have been added to reflect recent developments, and the Bibliography has been revised to maintain its comprehensiveness.
517.58 --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Hypergeometric series. --- 517.58 Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Hypergeometric series --- Gaussian hypergeometric series --- Gaussian series --- Gauss's series --- Series --- Hypergeometric functions --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials --- Mathematical analysis. --- 517.1 Mathematical analysis --- Mathematical analysis
Choose an application
Mathematical analysis --- Mathematical physics --- Mathematics --- 517.58 --- 517.58 Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Tables --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials --- Tables. --- Mathématiques --- Mathematics - Tables
Choose an application
Mathematical analysis --- Algebraic geometry --- Curves, Elliptic --- Elliptic functions --- 517.58 --- Elliptic integrals --- Functions, Elliptic --- Integrals, Elliptic --- Transcendental functions --- Functions of complex variables --- Integrals, Hyperelliptic --- Elliptic curves --- Curves, Algebraic --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Curves, Elliptic. --- Elliptic functions. --- 517.58 Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials --- Courbes elliptiques --- Fonctions speciales --- Fonctions elliptiques
Choose an application
Complex analysis --- Algebraic geometry --- Number theory --- Elliptic functions --- 517.58 --- #WWIS:d.d. Prof. L. Bouckaert/ALTO --- Elliptic integrals --- Functions, Elliptic --- Integrals, Elliptic --- Transcendental functions --- Functions of complex variables --- Integrals, Hyperelliptic --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- 517.58 Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials --- Nombres, Théorie des --- Modular functions. --- Fonctions modulaires --- Number theory. --- Nombres, Théories des --- Geometrie algebrique --- Fonctions elliptiques --- Formes automorphes --- Varietes abeliennes
Choose an application
The Table of Integrals, Series, and Products is the major reference source for integrals in the English language.It is designed for use by mathematicians, scientists, and professional engineers who need to solve complex mathematical problems.*Completely reset edition of Gradshteyn and Ryzhik reference book*New entries and sections kept in orginal numbering system with an expanded bibliography*Enlargement of material on orthogonal polynomials, theta functions, Laplace and Fourier transform pairs and much more.orthogonal polynomials, theta functions, Laplace and Fourier tr
Functional analysis --- Mathematics --- Mathématiques --- Tables. --- Tables --- 517.58 --- 517.3 --- 519.66 --- -Math --- Science --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- Integral calculus. Integration --- Mathematic tables and their compilation --- -Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- 519.66 Mathematic tables and their compilation --- 517.3 Integral calculus. Integration --- 517.58 Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials. --- -519.66 Mathematic tables and their compilation --- Math --- Special functions. Hyperbolic functions. Euler integrals. Gamma functions. Elliptic functions and integrals. Bessel functions. Other cylindrical functions. Spherical functions. Legendre polynomials. Orthogonal polynomials. Chebyshev polynomials --- Logarithms. --- Logs (Logarithms) --- Algebra --- Mathematics - Tables
Listing 1 - 10 of 33 | << page >> |
Sort by
|