Listing 1 - 10 of 36 | << page >> |
Sort by
|
Choose an application
As senior wrangler in 1854, Edward John Routh (1831-1907) was the man who beat James Clerk Maxwell in the Cambridge mathematics tripos. He went on to become a highly successful coach in mathematics at Cambridge, producing a total of twenty-seven senior wranglers during his career - an unrivalled achievement. In addition to his considerable teaching commitments, Routh was also a very able and productive researcher who contributed to the foundations of control theory and to the modern treatment of mechanics. First published in one volume in 1860, this textbook helped disseminate Routh's investigations into stability. This revised fifth edition was published in two volumes between 1891 and 1892. The first part establishes the principles of dynamics, providing formulae and examples throughout. While the growth of modern physics and mathematics may have forced out the problem-based mechanics of Routh's textbooks from the undergraduate syllabus, the utility and importance of his work is undiminished.
Choose an application
As senior wrangler in 1854, Edward John Routh (1831-1907) was the man who beat James Clerk Maxwell in the Cambridge mathematics tripos. He went on to become a highly successful coach in mathematics at Cambridge, producing a total of twenty-seven senior wranglers during his career - an unrivalled achievement. In addition to his considerable teaching commitments, Routh was also a very able and productive researcher who contributed to the foundations of control theory and to the modern treatment of mechanics. First published in one volume in 1860, this textbook helped disseminate Routh's investigations into stability. This revised fifth edition was published in two volumes between 1891 and 1892. The second part develops the extensive coverage of dynamics, providing formulae and examples throughout. While the growth of modern physics and mathematics may have forced out the problem-based mechanics of Routh's textbooks from the undergraduate syllabus, the utility and importance of his work is undiminished.
Choose an application
Master the conceptual, theoretical and practical aspects of kinematics with this exhaustive text, which provides a rigorous analysis and description of general motion in mechanical systems, with numerous examples from spinning tops to wheel ground-vehicles. Over 400 figures illustrate the main ideas and provide a geometrical interpretation and a deeper understanding of concepts, and exercises and problems throughout the text provide additional hands-on practice. Ideal for students taking courses on rigid body kinematics, and an invaluable reference for researchers.
Choose an application
Dynamics, Rigid. --- Recursive functions. --- Robots --- Dynamics.
Choose an application
Building up from first principles and simple scenarios, this comprehensive introduction to rigid body dynamics gradually introduces readers to tools to address involved real-world problems, and cutting-edge research topics. Using a unique blend of conceptual, theoretical and practical approaches, concepts are developed and rigorously applied to practical examples in a consistent and understandable way. It includes discussion of real-world applications including robotics and vehicle dynamics, and over 40 thought-provoking fully worked examples to cement readers' understanding. Providing a wealth of resources allowing readers to confidently self-assess - including over 100 problems with solutions, over 400 high quality multiple choice questions, and end-of-chapter puzzles dealing with everyday situations - this is an ideal companion for undergraduate students in aerospace, civil and mechanical engineering.
Choose an application
This book discusses topics on D’Alembert’s principle, virtual work, Eulerian angles, Lagrange’s equation in generalized coordinates and motion of a top. Momental ellipsoid of a point of a rigid body and conservation principle of angular momentum are discussed in detail. This is an essential textbook on Newtonian rigid dynamics, useful for advanced undergraduate and graduate students of physics, mathematics and engineering. This book contains solutions to more than 350 examples as well as more than 350 figures, which are nicely explaining the concept of rigid dynamics. Necessary mathematics have been created at the spot where they are needed. .
Gravitation. --- Newtonian Physics. --- Dynamics, Rigid. --- Electronic books
Choose an application
This classic book is a encylopaedic and comprehensive account of the classical theory of analytical dynamics. The treatment is rigorous yet readable, starting from first principles with kinematics before moving to equations of motion and specific and explicit methods for solving them, with chapters devoted to particle dyanmics, rigid bodies, vibration, and dissipative systems. Hamilton's principle is introduced and then applied to dynamical systems, including three-body systems and celestial mechanics. Very many examples and exercisies are supplied throughout.
Choose an application
Choose an application
Dynamics of a particle. --- Dynamics, Rigid. --- Dynamics. --- Dynamics --- Dynamics of a particle --- Dynamics, rigid
Choose an application
This book is an integrated approach to kinematic and dynamic analysis. The matrix techniques presented are general and fully applicable to two- or three-dimensional systems. They lend themselves to programming and digital computation and can act as the basis of a usable tool for designers. Techniques have broad applicability to the design analysis of all multibody mechanical systems. The more powerful and more flexible the approach, and the less specialisation and reprogramming required for each application, the better. The matrix methods presented have been developed using these ideas as primary goals. Matrix methods can be applied by hand to such problems as the slider-crank mechanism, but this is not the intent of this text, and often the rigor required for such an attempt becomes quite burdensome in comparison with other techniques. The matrix methods have been extensively tested, both in the classroom and in the world of engineering industry.
Machinery, Dynamics of. --- Multibody systems --- Dynamics, Rigid --- Mathematical models. --- Mathematics.
Listing 1 - 10 of 36 | << page >> |
Sort by
|