Narrow your search

Library

KU Leuven (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

VUB (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2023 (1)

2015 (1)

Listing 1 - 2 of 2
Sort by

Book
Optimal Transport for Applied Mathematicians : Calculus of Variations, PDEs, and Modeling
Author:
ISBN: 3319208276 3319208284 Year: 2015 Publisher: Cham : Springer International Publishing : Imprint: Birkhäuser,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.


Book
A Course in the Calculus of Variations : Optimization, Regularity, and Modeling
Author:
ISBN: 9783031450365 Year: 2023 Publisher: Cham : Springer International Publishing : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides an introduction to the broad topic of the calculus of variations. It addresses the most natural questions on variational problems and the mathematical complexities they present. Beginning with the scientific modeling that motivates the subject, the book then tackles mathematical questions such as the existence and uniqueness of solutions, their characterization in terms of partial differential equations, and their regularity. It includes both classical and recent results on one-dimensional variational problems, as well as the adaptation to the multi-dimensional case. Here, convexity plays an important role in establishing semi-continuity results and connections with techniques from optimization, and convex duality is even used to produce regularity results. This is then followed by the more classical Hölder regularity theory for elliptic PDEs and some geometric variational problems on sets, including the isoperimetric inequality and the Steiner tree problem. The book concludes with a chapter on the limits of sequences of variational problems, expressed in terms of Γ-convergence. While primarily designed for master's-level and advanced courses, this textbook, based on its author's instructional experience, also offers original insights that may be of interest to PhD students and researchers. A foundational understanding of measure theory and functional analysis is required, but all the essential concepts are reiterated throughout the book using special memo-boxes.

Listing 1 - 2 of 2
Sort by