Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This book provides extensive information about advanced control techniques in electric drives. Multiple control and estimation methods are studied for position and speed tracking in different drives. Artificial intelligence tools, such as fuzzy logic and neural networks, are used for specific applications using electric drives.
History of engineering & technology --- PMSM drive --- current control --- deadbeat predictive control --- equivalent input disturbance --- BSAII --- Euclidean distance --- energy management --- E-REV --- overhead transmission line --- UAV inspection --- safe distance --- multi-source data fusion --- adaptive threshold --- permanent magnet synchronous motor --- second-order sliding mode control --- cascade control --- robustness --- PMSM --- model predictive control --- parameter identification --- hybrid electric vehicles (HEVs) --- mode transition --- adaptive sliding mode control (A-SMC) --- clutch actuator --- PI observer --- fractional order proportional-integral-differential (FOPID) --- indirect vector control --- position control of motor --- induction motor --- sensorless control --- sliding mode observer --- RBFNN-based self-tuning PID controller --- I-f startup strategy --- PMLSM --- position sensorless control --- high-frequency square-wave voltage injection --- FIR filter --- maglev train --- automotive electric powertrain --- rotor position sensor --- resolver --- inductive position sensor --- eddy current position sensor --- Hall sensor --- magnetoresistive position sensor --- Hall sensors --- brushless direct current motor drive system --- power electronics --- industrial application --- integrated electric drive system --- electromechanical coupling --- harmonic torque reduction strategy --- quantized --- nonlinear systems --- time delay --- lyapunov approach --- real-time implementation --- neural fuzzy controller --- I-f control strategy --- fractional order control --- synergetic control --- sliding mode control --- motor drives --- advanced control --- power converters --- estimation --- sensor --- artificial intelligence
Choose an application
It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines.
History of engineering & technology --- core saturation --- cross-coupling inductance --- wound synchronous machines (WSM) --- signal injection --- position sensorless --- high-frequency model --- hybrid permanent magnet --- interior permanent magnet (IPM) machine --- magnet-axis-shifted --- reluctance torque --- Sensorless --- induction motors --- H_infinity --- drives --- vector control --- experimental implementation --- direct torque control --- duty cycle control --- harmonic currents --- six-phase induction motor --- torque ripple --- interior permanent magnet synchronous motor (IPMSM) --- sensorless control --- adaptive algorithm --- super-twisting sliding mode observer (STO) --- phase-locked loop (PLL) --- permanent-magnet vernier machine --- in-wheel direct-drive --- outer rotor --- overhang --- soft magnetic composite --- reaction sphere --- spherical motor --- structural design --- torque density optimization --- support vector machines --- finite element method --- induction motor --- smart-sensor --- stray flux --- time-frequency transforms --- wavelet entropy --- harmonic modeling method --- magnetic-geared machine --- hybrid electric vehicle --- magnetic field --- electromagnetic performance --- analytical modeling --- brushless DC motor --- commutation torque ripple --- back electromotive force --- multiphase machines --- fault-tolerance --- dual-channel --- brushless direct current motor with permanent magnet (BLDCM) --- switched reluctance motor (SRM) --- active flux --- stator flux observation --- super-twisting sliding-mode stator flux observer (STSMFO) --- deep-bar effect --- mathematical model --- estimation --- motor drives --- direct torque control (DTC) --- permanent magnet synchronous motor (PMSM) --- maximum torque per ampere (MTPA) operation --- DTC with space-vector modulation (DTC-SVM) --- AFPMSM --- analytical algorithm --- vibration noise --- temperature field analysis --- SynRM --- irreversible demagnetization --- PMa-SynRM --- flux intensifying --- deadbeat current control --- PMSM servo motor drives --- auto tuning --- parameter identification --- periodic controller --- surface permanent magnet synchronous motor --- fault-tolerant system --- multi-channel --- quad-channel operation (QCO) --- triple-channel operation (TCO) --- dual-channel operation (DCO) --- single-channel operation (SCO) --- permanent magnet brushless direct current motor --- BLDCM --- double Fourier analysis --- current spectrum decomposition --- eddy current loss --- permanent magnet machine design --- cogging torque --- permanent magnet machine --- uneven magnets --- IPMSM --- uncertainty and disturbance estimator --- flux-weakening control --- double-cage induction motor --- improvement of motor reliability --- cage winding constructions --- direct start-up --- coupled electromagnetic-thermal model --- outer rotor inductor --- electric vehicle --- high-efficiency --- eco-friendly --- automation --- finite element analysis --- PMSM --- DOE --- optimization --- metamodeling --- adaptive robust control --- energy feedback --- particle swarm optimization --- torque optimal distribution method --- multiphase electric drives --- six-phase machines --- finite control set model predictive control --- predictive current control --- predictive torque control --- high frequency square-wave voltage --- interior permanent-magnet synchronous motor (IPMSM) --- magnetic polarity detection --- rotor position estimation --- characteristics analysis --- fault detection --- stator fault --- rotor fault --- torque estimation --- finite control set mode predictive control --- duty cycle --- maximum torque per ampere --- permanent magnet synchronous motor --- acoustics --- boundary element method --- electric machines --- magneto-mechanics --- modeling --- noise --- vibro-acoustics --- efficiency --- line-start synchronous reluctance motor --- permanent magnet --- power factor --- multiphase --- induction --- motor --- space harmonics --- time harmonics --- injection --- high-speed permanent synchronous motor --- magnetic field characteristic --- iron loss --- stator structure --- online parameters estimation --- permanent magnet synchronous machines --- synchronous reluctance machines --- high frequency signal injection --- CMV --- modulation techniques --- PWM --- railway traction drives --- induction motor drives --- high-speed drives --- overmodulation and six-step operation --- electrical motors --- sot filling factor --- optimization algorithm --- windings --- magnetic wire --- filling factor optimization --- electric drive --- transmission shaft --- electric transmission line --- electrical and mechanical similarities --- kinematic structure --- equivalent circuit --- mathematical modelling --- failure --- detection --- diagnosis --- BLDC --- brushless --- systematic review --- rotor position --- BLDC motor --- sensor misalignment --- sizing methodology --- electrical machines --- thermal model --- electromagnetic model --- switched reluctance motor --- torque sharing functions --- firing angle modulation --- autonomous systems --- brushless synchronous generator --- electric power generation --- high speed generator --- high resistance connection --- fault-detection --- fault-tolerant control --- six-phase permanent magnet synchronous machines --- field-oriented control
Choose an application
It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines.
History of engineering & technology --- core saturation --- cross-coupling inductance --- wound synchronous machines (WSM) --- signal injection --- position sensorless --- high-frequency model --- hybrid permanent magnet --- interior permanent magnet (IPM) machine --- magnet-axis-shifted --- reluctance torque --- Sensorless --- induction motors --- H_infinity --- drives --- vector control --- experimental implementation --- direct torque control --- duty cycle control --- harmonic currents --- six-phase induction motor --- torque ripple --- interior permanent magnet synchronous motor (IPMSM) --- sensorless control --- adaptive algorithm --- super-twisting sliding mode observer (STO) --- phase-locked loop (PLL) --- permanent-magnet vernier machine --- in-wheel direct-drive --- outer rotor --- overhang --- soft magnetic composite --- reaction sphere --- spherical motor --- structural design --- torque density optimization --- support vector machines --- finite element method --- induction motor --- smart-sensor --- stray flux --- time-frequency transforms --- wavelet entropy --- harmonic modeling method --- magnetic-geared machine --- hybrid electric vehicle --- magnetic field --- electromagnetic performance --- analytical modeling --- brushless DC motor --- commutation torque ripple --- back electromotive force --- multiphase machines --- fault-tolerance --- dual-channel --- brushless direct current motor with permanent magnet (BLDCM) --- switched reluctance motor (SRM) --- active flux --- stator flux observation --- super-twisting sliding-mode stator flux observer (STSMFO) --- deep-bar effect --- mathematical model --- estimation --- motor drives --- direct torque control (DTC) --- permanent magnet synchronous motor (PMSM) --- maximum torque per ampere (MTPA) operation --- DTC with space-vector modulation (DTC-SVM) --- AFPMSM --- analytical algorithm --- vibration noise --- temperature field analysis --- SynRM --- irreversible demagnetization --- PMa-SynRM --- flux intensifying --- deadbeat current control --- PMSM servo motor drives --- auto tuning --- parameter identification --- periodic controller --- surface permanent magnet synchronous motor --- fault-tolerant system --- multi-channel --- quad-channel operation (QCO) --- triple-channel operation (TCO) --- dual-channel operation (DCO) --- single-channel operation (SCO) --- permanent magnet brushless direct current motor --- BLDCM --- double Fourier analysis --- current spectrum decomposition --- eddy current loss --- permanent magnet machine design --- cogging torque --- permanent magnet machine --- uneven magnets --- IPMSM --- uncertainty and disturbance estimator --- flux-weakening control --- double-cage induction motor --- improvement of motor reliability --- cage winding constructions --- direct start-up --- coupled electromagnetic-thermal model --- outer rotor inductor --- electric vehicle --- high-efficiency --- eco-friendly --- automation --- finite element analysis --- PMSM --- DOE --- optimization --- metamodeling --- adaptive robust control --- energy feedback --- particle swarm optimization --- torque optimal distribution method --- multiphase electric drives --- six-phase machines --- finite control set model predictive control --- predictive current control --- predictive torque control --- high frequency square-wave voltage --- interior permanent-magnet synchronous motor (IPMSM) --- magnetic polarity detection --- rotor position estimation --- characteristics analysis --- fault detection --- stator fault --- rotor fault --- torque estimation --- finite control set mode predictive control --- duty cycle --- maximum torque per ampere --- permanent magnet synchronous motor --- acoustics --- boundary element method --- electric machines --- magneto-mechanics --- modeling --- noise --- vibro-acoustics --- efficiency --- line-start synchronous reluctance motor --- permanent magnet --- power factor --- multiphase --- induction --- motor --- space harmonics --- time harmonics --- injection --- high-speed permanent synchronous motor --- magnetic field characteristic --- iron loss --- stator structure --- online parameters estimation --- permanent magnet synchronous machines --- synchronous reluctance machines --- high frequency signal injection --- CMV --- modulation techniques --- PWM --- railway traction drives --- induction motor drives --- high-speed drives --- overmodulation and six-step operation --- electrical motors --- sot filling factor --- optimization algorithm --- windings --- magnetic wire --- filling factor optimization --- electric drive --- transmission shaft --- electric transmission line --- electrical and mechanical similarities --- kinematic structure --- equivalent circuit --- mathematical modelling --- failure --- detection --- diagnosis --- BLDC --- brushless --- systematic review --- rotor position --- BLDC motor --- sensor misalignment --- sizing methodology --- electrical machines --- thermal model --- electromagnetic model --- switched reluctance motor --- torque sharing functions --- firing angle modulation --- autonomous systems --- brushless synchronous generator --- electric power generation --- high speed generator --- high resistance connection --- fault-detection --- fault-tolerant control --- six-phase permanent magnet synchronous machines --- field-oriented control
Listing 1 - 3 of 3 |
Sort by
|