Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
Open-source electronics are becoming very popular, and are integrated with our daily educational and developmental activities. At present, the use open-source electronics for teaching science, technology, engineering, and mathematics (STEM) has become a global trend. Off-the-shelf embedded electronics such as Arduino- and Raspberry-compatible modules have been widely used for various applications, from do-it-yourself (DIY) to industrial projects. In addition to the growth of open-source software platforms, open-source electronics play an important role in narrowing the gap between prototyping and product development. Indeed, the technological and social impacts of open-source electronics in teaching, research, and innovation have been widely recognized.
distributed measurement systems --- open-source platform --- n/a --- FPGA --- technology convergence --- distributed energy resource --- vision system --- infrared --- DC/DC converter --- modified sliding window algorithm --- virtual sensor --- open platform --- context --- maximum power point tracking (MPPT) --- ontology --- Python --- EPICS --- human-computer interface (HCI) --- visual algorithms --- open hardware --- automated vehicle --- interleaved --- electromyogram (EMG) --- sensor detection --- smart farming --- digital signal controllers --- blockchain --- PiCamera --- eye tracking --- smart cities --- Arduino --- smart converter --- OPC UA --- Field Programmable Gate Array (FPGA) --- wireless sensor networks --- Raspberry Pi --- BeagleBoard --- service learning --- embedded systems education --- individual management of livestock --- robotics --- sensor networks --- dsPIC --- thermal imaging --- photovoltaic (PV) system --- hardware trojan taxonomy --- science teaching --- side channel analysis --- coalition --- electrooculogram (EOG) --- automation networks --- robotic tool --- cloud computing --- Java --- industry 4.0 --- teaching robotics --- Digital Signal Processor (DSP) --- piecewise linear approximation (PLA) --- Internet of Things --- Cloud of Things --- STEM --- support vector regression --- cyber-physical systems --- interaction --- node-RED --- momentum data sensing --- remote sensing platform
Choose an application
This book focuses on the applications of Power Electronics Converters in smart grids and renewable energy systems. The topics covered include methods to CO2 emission control, schemes for electric vehicle charging, reliable renewable energy forecasting methods, and various power electronics converters. The converters include the quasi neutral point clamped inverter, MPPT algorithms, the bidirectional DC-DC converter, and the push–pull converter with a fuzzy logic controller.
Technology: general issues --- History of engineering & technology --- Environmental science, engineering & technology --- allied in-situ injection and production (AIIP) --- CO2 huff and puff --- shale oil reservoirs --- enhanced oil recovery --- renewable energy sources --- forecasting --- Weibull distribution --- neural networks --- optimal economic dispatch --- particle swarm optimization --- distribution network (DN) --- doubly-fed induction generator (DFIG) --- feeder automation (FA) --- compatibility --- adaptive control strategy (ACS) --- coordination technology --- air-cooled condenser --- mechanical draft wet-cooling towers --- hot recirculation rate --- complex building environment --- numerical simulation --- Neutral Point Clamped Z-Source Inverter (NPCZSI) --- shoot-through duty ratio --- modulation index --- voltage gain --- power quality --- dynamic modeling --- DC-DC converter --- electric vehicle (EV) --- charge pump capacitor --- fuzzy logic control --- maximum power point tracking --- photovoltaic --- push pull converter --- off-grid voltage source inverter --- medium voltage distribution network --- switch station --- electric vehicle --- DC–DC converter --- reconfiguration --- orderly charging --- grey wolf optimizer --- electrical harmonics --- harmonic estimation --- total harmonic distortion --- battery energy storage system --- third-harmonic current injection --- high efficiency --- active damping
Choose an application
The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.
multi-clearance --- neural network --- zero average dynamics --- Cable3D --- variable bus voltage MG --- explosion-magnetic generator --- quadratic boost --- matrix norm --- coordinated control system --- permanent magnet synchronous motor (PMSM) --- photovoltaic (PV) --- power conversion --- capacitance current pulse train control --- air gap eccentricity --- high step-up voltage gain --- voltage ripple --- offset-free --- goal representation heuristic dynamic programming (GrHDP) --- current mode control --- sliding mode observer (SMO) --- multi-model predictive control --- combined heat and power unit --- discontinuous conduction mode (DCM) --- current-pulse formation --- sliding mode control --- single artificial neuron goal representation heuristic dynamic programming (SAN-GrHDP) --- subharmonic oscillations --- DC micro grid --- supply air temperature --- air-handling unit (AHU) --- vibration characteristics --- magnetic saturation --- slope compensation --- fixed-point inducting control --- the load of suspension point in the z direction --- variable switching frequency DC-DC converters --- droop control --- Helmholtz number --- plasma accelerator --- contraction analysis --- sliding control --- bifurcations in control parameter --- disturbance observer --- DC motor --- multiphysics --- virtual impedance --- pulverizing system --- ultrahigh voltage conversion ratio --- corrugated pipe --- DC-DC converters --- maximum power point tracking (MPPT) --- dynamic model --- nonlinear dynamics --- new step-up converter --- micro-grid --- global stability --- extended back electromotive force (EEMF) --- small-signal model --- electromagnetic vibration --- nonlinear dynamic model --- excited modes --- data-driven --- rigid body rotation --- position sensorless --- prediction --- centralized vs. decentralized control --- inferential control --- boost-flyback converter --- calculation method --- switched reluctance generator --- monodromy matrix --- bridgeless converter --- decoupling control --- distributed architecture --- wave --- buck converter --- soft sensor --- model–plant mismatches --- whistling noise --- efficiency optimization --- steel catenary riser --- moving horizon estimation --- single artificial neuron (SAN) --- space mechanism --- two-stage bypass --- electrical machine --- harmonic suppression --- local vs. global optimization --- performance recovery --- reinforcement learning (RL) --- adaptive dynamic programming (ADP) --- overvoltage --- planetary gears --- maximum power point tracking --- DC-DC buck converter --- power quality --- average-current mode control --- feedback coefficient --- power factor correction (PFC) --- capacitance current --- predictive control --- rotor dynamics
Choose an application
This book offers a collection of 30 scientific papers which address the problems associated with the use of power electronic converters in renewable energy source-based systems. Relevant problems associated with the use of power electronic converters to integrate renewable energy systems to the power grid are presented. Some of the covered topics relate to the integration of photovoltaic and wind energy generators into the rest of the system, and to the use of energy storage to mitigate power fluctuations, which are a characteristic of renewable energy systems. The book provides a good overview of the abovementioned topics.
n/a --- washout filter --- turbine and generator --- unbalanced power grid --- PV --- transient dynamics --- multi-input single output (MISO) --- permanent magnet synchronous generator (PMSG) --- static frequency characteristics --- impedance analysis --- FACTS devices --- coordinated control --- improved additional frequency control --- experiment --- resonant controller --- two-stage photovoltaic power --- voltage cancellation --- energy --- power matching --- LCL filter --- adaptive-MPPT (maximum power point tracking) --- VSC --- active power filter --- perturb and observe --- coordination control --- voltage-type control --- multiple VSGs --- wind power prediction --- linear quadratic regulator --- multiport converter (MPC) --- grid support function --- power ripple elimination --- adaptive resonant controller --- phase space reconstruction --- sliding mode control --- impedance emulation --- photovoltaic systems --- grid-connected converter --- SVM --- photovoltaic generators --- power grid --- active front-end converter --- THD --- type-4 wind turbine --- inertia --- ROCOF --- microgrid --- coupled oscillators --- multilevel power converter --- DC-AC power converters --- internal model --- back-to-back converter --- duty-ratio constraints --- selective harmonic mitigation --- parallel inverters --- discontinuous conduction mode --- droop control --- step size --- grid-connected --- inverter --- short-circuit fault --- energy router --- oscillation mitigation --- improved-VSG (virtual synchronous generator) --- source and load impedance --- synchronverter --- digital signal processor (DSP) TMS320F28335 --- operation optimization --- battery-energy storage --- generator speed control --- electrical power generation --- virtual impedance --- weak grid --- doubly-fed induction generator --- grid synchronization --- Energy Internet --- open circuit voltage --- state-of-charge balancing --- renewable power system --- control strategies --- adaptive notch filter (ANF) --- renewable energy --- hardware in the loop (HIL) --- energy storage --- microgrids --- inertia and damping characteristics --- electric vehicle --- multi-energy complementary --- static compensator --- stability --- battery energy storage system --- power-hardware-in- the-loop --- electricity price --- notch filter --- time series --- distorted grid --- oscillation suppression --- phase-locked loop (PLL) --- modules --- organic Rankine cycle --- failure zone --- Opal-RT Technologies® --- distributed generation --- modular multilevel converter --- governor --- microgrid (MG) --- second-life battery --- thermoelectric generator --- stability analysis --- wind energy system --- variable coefficient regulation --- single ended primary inductor converter (SEPIC) --- error --- soft switching --- power electronics --- PLL --- SPWM --- virtual synchronous generator --- perturbation frequency --- phase shifted --- grid-connected inverter --- cloud computing --- low inertia --- boost converter --- impedance reshaping --- small-signal and transient stability --- speed control --- multivariate linear regression --- photovoltaic --- adaptive control --- frequency regulation --- variable power tracking control --- power converters --- maximum power point tracking --- virtual admittance --- synchronization --- peak-current-mode control --- dynamic modeling --- discontinuous operation mode --- demand response
Choose an application
Photovoltaic solar energy technology (PV) has been developing rapidly in the past decades, leading to a multi-billion-dollar global market. It is of paramount importance that PV systems function properly, which requires the generation of expected energy both for small-scale systems that consist of a few solar modules and for very large-scale systems containing millions of modules. This book increases the understanding of the issues relevant to PV system design and correlated performance; moreover, it contains research from scholars across the globe in the fields of data analysis and data mapping for the optimal performance of PV systems, faults analysis, various causes for energy loss, and design and integration issues. The chapters in this book demonstrate the importance of designing and properly monitoring photovoltaic systems in the field in order to ensure continued good performance.
fault diagnosis --- modeling --- simulation --- fault tree analysis --- photovoltaic system --- Bartlett’s test --- metaheuristic --- population density --- spatial analyses --- AC parameters --- parameter estimation --- fiber reinforced polymeric plastic (FRP) --- Hartigan’s dip test --- energy --- image processing --- real data --- photovoltaic (PV) systems monitoring --- forecast --- photovoltaic plants --- system --- graphical malfunction detection --- defects --- STATCOM --- photo-generated current --- performance analysis --- photovoltaic module performance --- solar energy --- urban context --- thermal interaction --- underdamped oscillation --- reliability --- membership algorithm --- photovoltaic systems --- availability --- fuzzy logic controller --- ANOVA --- solar farm --- energy yield --- cluster analysis --- photovoltaics --- annual yield --- residential buildings --- PV array --- PV system --- dc-dc converter --- quasi-opposition based learning --- grid-connected --- performance ratio --- organic soiling --- vegetated/green roof --- conventional roof membrane --- UV-fluorescence imaging --- PV thermal performance --- PV systems --- failure mode and effect analysis --- ageing and degradation of PV-modules --- sheet molding compound FRP --- Jarque-Bera’s test --- Tukey’s test --- technical costs --- Kruskal-Wallis’ test --- improved cuckoo search algorithm --- PV energy performance --- pultruded FRP --- cracks --- maximum power point tracking (MPPT) --- structural design --- software development --- floating PV generation structure --- malfunction detection --- modules --- photovoltaic performance --- maximum power point --- GIS --- impedance spectroscopy --- floating PV systems (FPV) --- solar cells --- Renewable Energy --- loss analysis --- shade resilience --- Scanning Electron Microscopy (SEM) --- failure detection --- optimization problem --- failure rates --- FCM algorithm --- stability analysis --- reactive power support --- mooring system --- buck converter --- Mood’s Median test --- photovoltaic modeling --- module architecture --- PV module --- data analysis --- partial shading --- opposition-based learning --- silicon --- floating PV module (FPVM) --- electroluminescence --- urban compactness
Choose an application
This book focuses on sustainable energy systems. While several innovative and alternative concepts are presented, the topics of energy policy, life cycle assessment, thermal energy, and renewable energy also play a major role. Models on various temporal and geographical scales are developed to understand the conditions of technical as well as organizational change. New methods of modeling, which can fulfil technical and physical boundary conditions and nevertheless consider economic environmental and social aspects, are also developed.
coal-fired power unit --- capacity investment --- energy density --- sensitivity analysis --- fuel --- renewable energy source penetration --- AHP --- torrefaction --- Active Disturbance Rejection Control --- swell effect disturbance --- renewable energy --- resource efficiency --- choice experiment --- pseudo-Huber loss --- integrated model --- Probabilistic Robustness --- sustainable energy --- Energy Life-Cycle Assessment --- hysteresis switching --- areal grey relational analysis --- market power --- photovoltaic with energy storage system --- wind power plants --- power system stability --- alternative energy --- hollow rollers --- efficiency --- generation system scheduling --- energy from biomass --- fuelwood value index --- manufacturing industry --- game theory --- energy modelling --- peach --- grindability --- artificial neural networks control --- sustainability --- large bearings --- levelized cost of energy --- renewable energies --- ash recovery --- thermodynamic cycle concepts --- modified cycle concepts --- HOMER simulation --- low-carbon economy --- energy systems --- fuzzy logic control --- basic plan for long-term electricity supply and demand --- LCOE comparison --- post-harvest --- heating value --- power supply reliability --- Pinus pinaster --- doubly fed induction generator --- willingness to pay --- multilayer perception --- robust optimization --- forecasting model for electricity demand --- transient impact --- uncertainty --- power electronics --- electrostatic devices --- flexibility --- active power harmonics filter --- Monte Carlo --- energy storage systems --- energy costs --- SWOT analysis --- tidal stream generator --- textile industrial sector --- stochastic approach --- deficit --- uncertainty analysis --- rotary reactor --- biomass --- secondary air regulation --- forecasting --- photovoltaic --- electricity --- Internet of Things --- dynamic planning --- fuzzy rough set --- flexible resource --- wind resources --- op-amp --- maximum power point tracking --- nexus concept
Choose an application
In the current scenario in which climate change dominates our lives and in which we all need to combat and drastically reduce the emission of greenhouse gases, renewable energies play key roles as present and future energy sources. Renewable energies vary across a wide range, and therefore, there are related studies for each type of energy. This Special Issue is composed of studies integrating the latest research innovations and knowledge focused on all types of renewable energy: onshore and offshore wind, photovoltaic, solar, biomass, geothermal, waves, tides, hydro, etc. Authors were invited submit review and research papers focused on energy resource estimation, all types of TRL converters, civil infrastructure, electrical connection, environmental studies, licensing and development of facilities, construction, operation and maintenance, mechanical and structural analysis, new materials for these facilities, etc. Analyses of a combination of several renewable energies as well as storage systems to progress the development of these sustainable energies were welcomed.
Technology: general issues --- RE prospects and challenges --- RE regulations and policy --- RE in Bangladesh --- geothermal energy --- induced seismicity --- fault --- Basel --- poroelasticity --- HEM --- PV sizing --- Load scheduling --- Dijkstra Algorithm --- BPSO --- GA --- optimization --- wind farm --- pumped storage --- isolated systems --- power plant efficiency --- compact pigeon-inspired optimization --- maximum short-term generation --- swarm intelligence --- hydroelectric power station --- strategic planning --- site selection process --- offshore wind farms --- geographic information systems --- portfolio analysis --- Greece --- renewable energy --- photovoltaic generation --- battery storage --- reliability evaluation --- Monte Carlo Simulation --- photovoltaics (PV) --- biomass --- off-grid electrification --- feasibility analysis --- cost analysis --- simple payback period --- CO2 emissions --- residential energy-related CO2 emissions --- less developed regions --- urban and rural regions --- LMDI --- Tapio decoupling --- Jiangxi province --- Hybrid energy system --- wind power --- photovoltaic --- hosting capacity --- distribution system --- integrated system --- floating buoy --- offshore structure --- wave energy converter --- non-negative spring stiffness --- renewable–growth hypothesis --- renewable electricity --- economic growth --- renewable manufacturing --- energy–growth nexus --- inverters --- converters --- distributed generators --- utility grid --- hierarchical control --- PHEV --- NEDC --- WLTP --- energy consumption --- NEV credit regulation --- subsidy policy --- frequency control --- power system stability --- variable renewable energy sources --- wind power plants --- photovoltaic power plants --- wave energy converters --- heaving point absorber --- design and performance --- spatial and temporal variation --- emergy --- emergetic ternary diagrams --- sustainability --- environmental loading --- energy systems assessment --- solar updraft tower --- artificial neural network --- principal component analysis --- wave overtopping rate --- photovoltaic spatial planning --- photovoltaic carrying capacity --- influence factors --- optimization strategies --- carrying capacity distribution --- planning adjustment --- renewable energy resources --- grid integrated solar PV systems --- sustainable power generation --- maximum power point tracking --- grid reliability and voltage source converter
Choose an application
Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.
History of engineering & technology --- three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency
Choose an application
This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators.
History of engineering & technology --- sensor network --- data fusion --- complex network analysis --- fault prognosis --- photovoltaic plants --- ANFIS --- statistical method --- gradient descent --- photovoltaic system --- sustainable development --- PV power prediction --- artificial neural network --- renewable energy --- environmental parameters --- multiple regression model --- moth-flame optimization --- parameter extraction --- photovoltaic model --- double flames generation (DFG) strategy --- Solar cell parameters --- single-diode model --- two-diode model --- COA --- photovoltaic systems --- maximum power point tracking --- single stage grid connected systems --- solar concentrator --- spectral beam splitting --- diffractive optical element --- diffractive grating --- PVs power output forecasting --- adaptive neuro-fuzzy inference systems --- particle swarm optimization-artificial neural networks --- solar irradiation --- photovoltaic power prediction --- publicly available weather reports --- machine learning --- long short-term memory --- integrated energy systems --- smart energy management --- PV fleet --- clustering-based PV fault detection --- unsupervised learning --- self-imputation --- implicit model solution --- photovoltaic array --- series–parallel --- global optimization --- partial shading --- deterministic optimization algorithm --- metaheuristic optimization algorithm --- genetic algorithm --- solar cell optimization --- finite difference time domain --- optical modelling --- thermal image --- photovoltaic module --- hot spot --- image processing --- deterioration --- linear approximation --- MPPT algorithm --- duty cycle --- global horizontal irradiance --- mathematical modeling --- feed-forward neural networks --- recurrent neural networks --- LSTM cell --- performances evaluation --- clear sky irradiance --- persistent predictor --- photovoltaics --- artificial neural networks --- national power system
Choose an application
The Special Issue “Assessment and Nonlinear Modeling of Wave, Tidal, and Wind Energy Converters and Turbines” contributes original research to stimulate the continuing progress of the offshore renewable energy (ORE) field, with a focus on state-of-the-art numerical approaches developed for the design and analysis of ORE devices. Particularly, this collection provides new methodologies, analytical/numerical tools, and theoretical methods that deal with engineering problems in the ORE field of wave, wind, and current structures. This Special Issue covers a wide range of multidisciplinary aspects, such as the 1) study of generalized interaction wake model systems with elm variation for offshore wind farms; 2) a flower pollination method based on global maximum power point tracking strategy for point-absorbing type wave energy converters; 3) performance optimization of a Kirsten–Boeing turbine using a metamodel based on neural networks coupled with CFD; 4) proposal of a novel semi-submersible floating wind turbine platform composed of inclined columns and multi-segmented mooring lines; 5) reduction of tower fatigue through blade back twist and active pitch-to-stall control strategy for a semi-submersible floating offshore wind turbine; 6) assessment of primary energy conversion of a closed-circuit OWC wave energy converter; 7) development and validation of a wave-to-wire model for two types of OWC wave energy converters; 8) assessment of a hydrokinetic energy converter based on vortex-induced angular oscillations of a cylinder; 9) application of wave-turbulence decomposition methods on a tidal energy site assessment; 10) parametric study for an oscillating water column wave energy conversion system installed on a breakwater; 11) optimal dimensions of a semisubmersible floating platform for a 10 MW wind turbine; 12) fatigue life assessment for power cables floating in offshore wind turbines.
History of engineering & technology --- off-shore wind farms (OSWFs) --- wake model --- wind turbine (WT) --- Extreme Learning Machine (ELM) --- wind power (WP) --- large-eddy simulation (LES) --- point-absorbing --- wave energy converter (WEC) --- maximum power point tracking (MPPT) --- flower pollination algorithm (FPA) --- power take-off (PTO) --- hill-climbing method --- Kirsten–Boeing --- vertical axis turbine --- optimization --- neural nets --- Tensorflow --- ANSYS CFX --- metamodeling --- FOWT --- multi-segmented mooring line --- inclined columns --- semi-submersible --- AFWT --- floating offshore wind turbine (FOWT) --- pitch-to-stall --- blade back twist --- tower fore–aft moments --- negative damping --- blade flapwise moment --- tower axial fatigue life --- wave energy --- oscillating water column --- tank testing --- valves --- air compressibility --- air turbine --- wave-to-wire model --- energy harnessing --- energy converter --- flow-induced oscillations --- vortex-induced vibration --- flow–structure interaction --- hydrodynamics --- vortex shedding --- cylinder wake --- tidal energy --- site assessment --- wave-current interaction --- turbulence --- integral length scales --- wave-turbulence decomposition --- OWC --- wave power converting system --- parametric study --- caisson breakwater application --- floating offshore wind turbines --- frequency domain model --- semisubmersible platform --- 10 MW wind turbines --- large floating platform --- platform optimization --- wind energy --- floating offshore wind turbine --- dynamic analysis --- fatigue life assessment --- flexible power cables --- Daguragu / Kalkaringi / Wave Hill (Central NT SE52-08)
Listing 1 - 10 of 11 | << page >> |
Sort by
|