Narrow your search

Library

ULB (26)

KU Leuven (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

UGent (5)

ULiège (5)

VIVES (5)

FARO (4)

More...

Resource type

book (26)


Language

English (26)


Year
From To Submit

2022 (7)

2021 (10)

2020 (6)

2016 (2)

2008 (1)

Listing 1 - 10 of 26 << page
of 3
>>
Sort by

Book
COSMOS - Components and Smart Machines with Micro-Nano Surface Embedded
Author:
Year: 2008 Publisher: Copenhagen : Nordic Council of Ministers,

Loading...
Export citation

Choose an application

Bookmark

Abstract

An improved interaction between human and machine is vital for the ongoing automation of our modern life style. However, since practically no machines would be working without the presence of sensors, humans are heavily dependent on sensor technology.


Book
Influence of Emitter Surface Roughness and Emission Inhomogeneity on Efficiency and Stability of High Power Fusion Gyrotrons
Author:
ISBN: 1000058566 3731505789 Year: 2016 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

The increasing demand for powerful, reliable, and efficient gyrotron oscillators for Electron Cyclotron Resonance Heating (ECRH) in fusion plasma experiments requires a close look at the various factors in gyrotrons that determine gyrotron performance. In this frame, the influence of emitter surface roughness, emission inhomogeneity, and secondary electron generation on gyrotron operation is presented, with focus on Low Frequency Oscillations (LFOs) and Electron Beam Halo (EBH) generation.


Book
Micro-Nano Surface Functionalization of Materials and Thin Films for Optical Applications
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains the articles collected for the Special Issue entitled "Micro-nano Surface Functionalization of Materials and Thin Films for Optical Applications" in the journal Coatings (ISSN 2079-6412). These selected articles provide a meaningful overview of recent advances and concepts beyond the state-of-the-art regarding surface functionalization of materials and deposition of thin films to be used in optical applications. The aim was to cover all relevant aspects of the topic (simulation, design, fabrication, characterization and applications) with a special emphasis on non-conventional methods for surface modification of materials, combinations of mature fabrication routes with emerging technologies (i.e., additive manufacturing) and large-area fabrication concepts to pave the way to an industrial utilization of the developed materials. This overview comprises the recent work of reputed scientists from Germany, Austria, Spain and India on: - New developments on the scale-up deposition of transparent conductive materials by magnetron sputtering,- Design of hierarchical surface structures at different scale lengths for nanoimprinting of optical nano- and micro-structures, - Non-conventional preparation of rutile-type TiO2 films at room temperature for optical applications on heat-sensitive substrates, - Design of spectrally selective solar absorber coatings based on computational simulation and ellipsometry measurements.


Book
Synthesis and Characterization of Ferroelectrics
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue on “Synthesis and Characterization of Ferroelectrics” reports on several physical properties of ferroelectric materials and their technological aspects. Different substitution mechanisms provide ideas toward future improvement of lead-free (Ba,Ca)(Zr,Ti)O3 piezoelectric ceramics, including the electrocaloric effect, fluorescence, and energy storage. It is established that axial and radial element segregation differently influences electrical properties of 0.68Pb(Mg1/3Nb2/3)0.32PbTiO3 (PMN-32PT for short) single crystals. While the electrical properties along the axial direction strongly depend on the PbTiO3 content, the electrical properties along the axial direction are mainly determined by the ratio of Nb and Mg. On the other hand, Fe-substitution of PMN-32PT crystals lead to an enhancement of the coercive field due to wall pinning induced by charged defect dipoles. It is also found, that capacitors based on Pt/Na0.5Bi0.5TiO3/La0.5Sr0.5CoO3 thin films display good fatigue resistance and retention. Another lead-free thin film capacitor fabricated from Ba0.3Sr0.7Zr0.18Ti0.82 features a low leakage current density and high breakdown strength. Such capacitors are essential for energy storage. Furthermore, an enhanced electrocaloric effect on 0.73Pb(Mg1/3Nb2/3)0.27PbTiO3 single crystals is demonstrated. This effect is promising for novel solid-state cooling systems.


Book
Preparation and Properties of 2D Materials
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials


Book
Gaseous and Electrochemical Hydrogen Storage Properties of Mg-Based Thin Films
Author:
ISBN: 3662494027 3662494043 Year: 2016 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this thesis, the author introduces the preparation of a series of Mg-based thin films with different structures by magnetron sputtering, and the systematical investigation of their gaseous and electrochemical hydrogen storage properties under mild conditions. The promising applications of Mg-based thin films in smart windows, hydrogen sensors and Ni-MH batteries are also reviewed. The research work presented in this thesis offers significant perspectives on the research of Mg-based hydrogen storage materials, especially the Mg-based films. Moreover, the unique experimental procedures and methods (including the electric resistance, optical transmittance and electrochemical methods) used in this thesis can also provide valuable reference for the researchers in the field of Mg-based hydrogen storage films.


Book
Plasma Electrolytic Oxidation (PEO) Coatings
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), functionalizes surfaces, improving the mechanical, thermal, and corrosion performance of metallic substrates, along with other tailored properties (e.g., biocompatibility, catalysis, antibacterial response, self-lubrication, etc.). The extensive field of applications of this technique ranges from structural components, in particular, in the transport sector, to more advanced fields, such as bioengineering. The present Special Issue covers the latest advances in PEO‐coated light alloys for structural (Al, Mg) and biomedical applications (Ti, Mg), with 10 research papers and 1 review from leading research groups around the world.


Book
Physical Vapor Deposited Biomedical Coatings
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book outlines a series of developments made in the manufacturing of bio-functional layers via Physical Vapour-Deposited (PVD) technologies for application in various areas of healthcare. The scrutinized PVD methods include Radio-Frequency Magnetron Sputtering (RF-MS), Cathodic Arc Evaporation, Pulsed Electron Deposition and its variants, Pulsed Laser Deposition, and Matrix-Assisted Pulsed Laser Evaporation (MAPLE) due to their great promise, especially in dentistry and orthopaedics. These methods have yet to gain traction for industrialization and large-scale application in biomedicine. A new generation of implant coatings can be made available by the (1) incorporation of organic moieties (e.g., proteins, peptides, enzymes) into thin films using innovative methods such as combinatorial MAPLE, (2) direct coupling of therapeutic agents with bioactive glasses or ceramics within substituted or composite layers via RF-MS, or (3) innovation in high-energy deposition methods, such as arc evaporation or pulsed electron beam methods.


Book
Ion-Substituted Calcium Phosphates Coatings
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Coatings based on hydroxyapatite and calcium phosphates have a significant relevance in several research fields, such as biomaterials, cultural heritage, and water treatment, due to their characteristic properties. Hydroxyapatite can easily accommodate foreign ions, which can either be incorporated into the lattice, thanks to its specific lattice characteristics, or be adsorbed onto its surface. All these substitutions significantly alter the morphology, lattice parameters, and crystallinity of hydroxyapatite so they influence its main properties. These ion substitutions can be sought or can derive from substrate contaminations, which is an important aspect to be evaluated. Finally, this capability can be used to obtain hydroxyapatites with specific properties, such as antibacterial characteristics, among others. For these reasons, the aim of this Special Issue is to document current advances in the field of ion-substituted hydroxyapatites and highlight possible future perspectives regarding their use. Contributions in the form of original articles and review articles are presented, covering different areas of application.

Listing 1 - 10 of 26 << page
of 3
>>
Sort by