Listing 1 - 10 of 26 | << page >> |
Sort by
|
Choose an application
An improved interaction between human and machine is vital for the ongoing automation of our modern life style. However, since practically no machines would be working without the presence of sensors, humans are heavily dependent on sensor technology.
Choose an application
The increasing demand for powerful, reliable, and efficient gyrotron oscillators for Electron Cyclotron Resonance Heating (ECRH) in fusion plasma experiments requires a close look at the various factors in gyrotrons that determine gyrotron performance. In this frame, the influence of emitter surface roughness, emission inhomogeneity, and secondary electron generation on gyrotron operation is presented, with focus on Low Frequency Oscillations (LFOs) and Electron Beam Halo (EBH) generation.
Strahlsysteme --- Emitter --- Low Frequency Oscillations --- Magnetron Injection Gun --- Gyrotron --- Electron Beam Halo --- Electron Beam HaloGyrotron
Choose an application
This book contains the articles collected for the Special Issue entitled "Micro-nano Surface Functionalization of Materials and Thin Films for Optical Applications" in the journal Coatings (ISSN 2079-6412). These selected articles provide a meaningful overview of recent advances and concepts beyond the state-of-the-art regarding surface functionalization of materials and deposition of thin films to be used in optical applications. The aim was to cover all relevant aspects of the topic (simulation, design, fabrication, characterization and applications) with a special emphasis on non-conventional methods for surface modification of materials, combinations of mature fabrication routes with emerging technologies (i.e., additive manufacturing) and large-area fabrication concepts to pave the way to an industrial utilization of the developed materials. This overview comprises the recent work of reputed scientists from Germany, Austria, Spain and India on: - New developments on the scale-up deposition of transparent conductive materials by magnetron sputtering,- Design of hierarchical surface structures at different scale lengths for nanoimprinting of optical nano- and micro-structures, - Non-conventional preparation of rutile-type TiO2 films at room temperature for optical applications on heat-sensitive substrates, - Design of spectrally selective solar absorber coatings based on computational simulation and ellipsometry measurements.
Research & information: general --- reactive magnetron sputtering --- transparent conductive oxide --- electronic transport --- doping efficiency --- tin dioxide --- Nanoimprint lithography --- UV-NIL --- reversal NIL --- liquid transfer imprint lithography --- hierarchical structures --- optical micro- and nanostructures --- ITO thin films --- magnetron sputtering --- low temperature deposition --- oxygen flow --- microstructure --- optoelectronic properties --- transparent heaters --- titanium oxide films --- filtered cathodic vacuum arc --- rutile --- optical coatings --- spectrally selective absorber --- multilayer stack --- spectroscopic ellipsometry --- optical constants --- simulation
Choose an application
The Special Issue on “Synthesis and Characterization of Ferroelectrics” reports on several physical properties of ferroelectric materials and their technological aspects. Different substitution mechanisms provide ideas toward future improvement of lead-free (Ba,Ca)(Zr,Ti)O3 piezoelectric ceramics, including the electrocaloric effect, fluorescence, and energy storage. It is established that axial and radial element segregation differently influences electrical properties of 0.68Pb(Mg1/3Nb2/3)0.32PbTiO3 (PMN-32PT for short) single crystals. While the electrical properties along the axial direction strongly depend on the PbTiO3 content, the electrical properties along the axial direction are mainly determined by the ratio of Nb and Mg. On the other hand, Fe-substitution of PMN-32PT crystals lead to an enhancement of the coercive field due to wall pinning induced by charged defect dipoles. It is also found, that capacitors based on Pt/Na0.5Bi0.5TiO3/La0.5Sr0.5CoO3 thin films display good fatigue resistance and retention. Another lead-free thin film capacitor fabricated from Ba0.3Sr0.7Zr0.18Ti0.82 features a low leakage current density and high breakdown strength. Such capacitors are essential for energy storage. Furthermore, an enhanced electrocaloric effect on 0.73Pb(Mg1/3Nb2/3)0.27PbTiO3 single crystals is demonstrated. This effect is promising for novel solid-state cooling systems.
Research & information: general --- PMN-32PT --- characterization --- segregation --- Bridgman technique --- ferroelectric materials --- piezoelectric --- ceramic --- lead-free --- PMN-32PT single crystal --- acceptor doping --- charged defects --- dielectric relaxation --- electrical conduction --- NBT epitaxial film --- ferroelectric properties --- ultraviolet light --- BSZT thin films --- capacitance properties --- RF magnetron sputtering --- PMN-PT --- single crystals --- P–E hysteresis loop --- electrocaloric effect --- Maxwell relation --- n/a --- P-E hysteresis loop
Choose an application
Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials
History of engineering & technology --- α-MoO3 --- carbon nitride --- g-C3N4 --- molybdenum trioxide --- nanoplates --- synthesis --- few-layer MoS2 --- magnetron sputtering --- magnetron sputtering power --- raman spectroscopy --- disorder --- V2Se9 --- atomic crystal --- mechanical exfoliation --- scanning Kelvin probe microscopy --- MoS2 --- black phosphorus --- 2D/2D heterojunction --- junction FET --- tunneling diode --- tunneling FET --- band-to-band tunneling (BTBT) --- natural molybdenite --- MoS2 nanosheet --- SiO2 --- liquid exfoliation --- photoelectric properties --- uniaxial strain --- flexible substrate --- film–substrate interaction --- photoluminescence --- Raman spectroscopy --- molybdenum disulfide --- bilayer-stacked structure --- WS2 --- lubricant additives --- tribological properties --- interfacial layer --- contact resistance --- bias stress stability --- saturable absorbers --- Langmuir–Blodgett technique --- Q-switched laser --- chemical vapor deposition --- P2O5 --- p-type conduction --- P-doped MoS2 --- transition metal dichalcogenides --- two-dimensional materials --- ferroelectrics --- 2D heterostructure --- WSe2 --- NbSe2 --- Nb2O5 interlayer --- synapse device --- neuromorphic system --- n/a --- film-substrate interaction --- Langmuir-Blodgett technique
Choose an application
In this thesis, the author introduces the preparation of a series of Mg-based thin films with different structures by magnetron sputtering, and the systematical investigation of their gaseous and electrochemical hydrogen storage properties under mild conditions. The promising applications of Mg-based thin films in smart windows, hydrogen sensors and Ni-MH batteries are also reviewed. The research work presented in this thesis offers significant perspectives on the research of Mg-based hydrogen storage materials, especially the Mg-based films. Moreover, the unique experimental procedures and methods (including the electric resistance, optical transmittance and electrochemical methods) used in this thesis can also provide valuable reference for the researchers in the field of Mg-based hydrogen storage films.
Materials Science --- Mechanical Engineering - General --- Mechanical Engineering --- Chemical & Materials Engineering --- Engineering & Applied Sciences --- Energy storage. --- Magnetron sputtering. --- Storage of energy --- Sputtering (Physics) --- Force and energy --- Power (Mechanics) --- Flywheels --- Pulsed power systems --- Chemistry, inorganic. --- Surfaces (Physics). --- Chemistry. --- Nanotechnology. --- Inorganic Chemistry. --- Surfaces and Interfaces, Thin Films. --- Electrochemistry. --- Molecular technology --- Nanoscale technology --- High technology --- Physical sciences --- Physics --- Surface chemistry --- Surfaces (Technology) --- Inorganic chemistry --- Chemistry --- Inorganic compounds --- Inorganic chemistry. --- Materials—Surfaces. --- Thin films. --- Chemistry, Physical and theoretical --- Films, Thin --- Solid film --- Solid state electronics --- Solids --- Coatings --- Thick films
Choose an application
hardening --- microstructure --- stainless steel --- WC-12Co coatings --- gear oil --- high velocity oxygen fuel spraying (HVOF) --- material deformation --- thermochemical treatment --- wetting behavior --- cracking behavior --- properties of surface layers --- wear resistance --- nitriding --- thermal spraying --- surface engineering --- Cu–Sn --- wear behavior --- K417G Ni-based superalloy --- tribology --- AISI 316L --- joint replacements --- reactive high-power impulse magnetron sputtering --- micropitting --- scuffing --- laser forming repairing --- Ti6Al4V --- wire arc spray --- cavitation erosion --- surface modification --- HVOF --- wear --- surface morphology --- S-phase --- wood sanding --- friction behavior --- competitive mechanism --- tribological properties --- steel gears --- coating --- DLC coating --- PTFE --- laser texturing --- surface characterization --- elastic spring back --- laser remelting --- XANES spectroscopy --- coatings --- abrasive wear --- silicon nitride --- pitting --- TiO2 sol --- ploughing --- lubricous oxides --- electrodeposition
Choose an application
Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), functionalizes surfaces, improving the mechanical, thermal, and corrosion performance of metallic substrates, along with other tailored properties (e.g., biocompatibility, catalysis, antibacterial response, self-lubrication, etc.). The extensive field of applications of this technique ranges from structural components, in particular, in the transport sector, to more advanced fields, such as bioengineering. The present Special Issue covers the latest advances in PEO‐coated light alloys for structural (Al, Mg) and biomedical applications (Ti, Mg), with 10 research papers and 1 review from leading research groups around the world.
Research & information: general --- Technology: general issues --- magnesium --- plasma electrolytic oxidation --- SiO2 particle --- corrosion resistance --- wear resistance --- micro arc oxidation (MAO) --- Cu nano-layer --- hydrophilic surface --- apatite --- in vitro bioactivity --- antibacterial properties --- PEO --- LDH --- active protection --- corrosion --- aluminium --- biodegradable implants --- magnesium alloy --- micro-arc oxidation --- Taguchi method --- SBF --- in-vivo test --- biodegradability --- plasma electrolytic oxidation (PEO) --- aluminum 6082 --- luminescent coatings --- phosphorescence --- anodized aluminum --- Mott-Schottky analysis --- defect --- annealing --- titanium dioxide --- anatase and rutile --- surface treatment --- wear --- medical engineering --- aluminum --- titanium --- Al7075 alloy --- aluminum oxide --- molten salt --- microhardness --- radio frequency magnetron sputtering (RFMS) --- calcium-phosphate (CaP) coating --- n/a
Choose an application
The book outlines a series of developments made in the manufacturing of bio-functional layers via Physical Vapour-Deposited (PVD) technologies for application in various areas of healthcare. The scrutinized PVD methods include Radio-Frequency Magnetron Sputtering (RF-MS), Cathodic Arc Evaporation, Pulsed Electron Deposition and its variants, Pulsed Laser Deposition, and Matrix-Assisted Pulsed Laser Evaporation (MAPLE) due to their great promise, especially in dentistry and orthopaedics. These methods have yet to gain traction for industrialization and large-scale application in biomedicine. A new generation of implant coatings can be made available by the (1) incorporation of organic moieties (e.g., proteins, peptides, enzymes) into thin films using innovative methods such as combinatorial MAPLE, (2) direct coupling of therapeutic agents with bioactive glasses or ceramics within substituted or composite layers via RF-MS, or (3) innovation in high-energy deposition methods, such as arc evaporation or pulsed electron beam methods.
Technology: general issues --- pulsed electron deposition --- thin films --- orthopedic applications --- bioactivity --- ceramic coatings --- yttria-stabilized zirconia --- calcium phosphates --- hydroxyapatite --- biomimetic coatings --- antibacterial coatings --- thin film --- RF magnetron sputtering --- pulsed DC --- Silicon --- bio-coatings --- biomimetics --- laser deposition --- PLD --- MAPLE --- tissue engineering --- cancer --- titanium-based carbonitrides --- coating --- corrosion resistance --- X-ray diffraction --- nanoindentation --- cathodic arc deposition --- biological-derived hydroxyapatite coatings --- lithium doping --- food industrial by-products --- in vivo extraction force --- pulsed laser deposition --- 3D printing --- calcium phosphate --- PEEK --- surface modification --- sputtering --- ToFSIMS --- XPS --- implant coating --- bioactive glass --- copper doping --- gallium doping --- mechanical --- cytocompatibility --- antibacterial --- physical vapour deposition --- thin-films --- medical devices --- biomimicry
Choose an application
Coatings based on hydroxyapatite and calcium phosphates have a significant relevance in several research fields, such as biomaterials, cultural heritage, and water treatment, due to their characteristic properties. Hydroxyapatite can easily accommodate foreign ions, which can either be incorporated into the lattice, thanks to its specific lattice characteristics, or be adsorbed onto its surface. All these substitutions significantly alter the morphology, lattice parameters, and crystallinity of hydroxyapatite so they influence its main properties. These ion substitutions can be sought or can derive from substrate contaminations, which is an important aspect to be evaluated. Finally, this capability can be used to obtain hydroxyapatites with specific properties, such as antibacterial characteristics, among others. For these reasons, the aim of this Special Issue is to document current advances in the field of ion-substituted hydroxyapatites and highlight possible future perspectives regarding their use. Contributions in the form of original articles and review articles are presented, covering different areas of application.
History of engineering & technology --- calcium phosphates --- ion-substituted apatites --- bone regeneration --- plasma-assisted deposition --- solubility --- crystallinity --- composition --- lithium-doped hydroxyapatite coatings --- renewable resources for implant coatings --- pulsed laser deposition --- biocompatibility --- inhibition of microbial biofilms development --- zinc --- hydroxyapatite --- ultrasound measurement --- sol–gel spin coating --- layers --- C. albicans --- S. aureus --- calcium phosphate --- magnesium phosphate --- struvite --- dolomite --- consolidating treatment --- cultural heritage --- ammonium phosphate --- marble --- calcite --- dissolution --- electrodeposition --- protective coatings --- acid attack --- potential --- current --- RF magnetron sputtering --- GLAD --- carbonated hydroxyapatite --- nanomaterials --- coatings --- cave painting --- inorganic consolidant --- ethyl silicate --- TEOS --- non-thermal plasma --- wettability --- bone --- allograft --- autograft --- xenograft --- ion-substituted calcium phosphates --- nanostructured coatings
Listing 1 - 10 of 26 | << page >> |
Sort by
|