Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This Special Issue reprint presents articles from researchers working on materials processing via electron beams as well as on their characterization, properties, and applications. The articles presented cover various topics, including metal melting and welding, additive manufacturing, electron beam irradiation, electron beam lithography, process modeling, etc.
Research & information: general --- Physics --- electron-beam welding --- welded metal structure --- dynamic positioning of an electron beam --- electron beam --- additive manufacturing --- titanium alloys --- wire feed process --- residual stresses --- mechanical properties --- EBI --- γ-ray --- GC-MS --- FT-IR --- larch sapwood --- wood extractives --- melting --- melting temperature --- numerical simulation --- electron beam additive manufacturing --- nanoindentation --- strain rate sensitivity --- creep --- corn starch --- potato starch --- moisture content --- specific heat capacity --- pH --- color parameters --- copper technogenic material --- thermodynamic analysis --- removal efficiency --- patterned sapphire substrate --- electron etching --- gold --- cathodoluminescent analysis --- anisotropy --- light-emitting diodes --- windows --- electron beam welding --- aluminum 6082 --- porosity --- beam figure --- electron-beam lithography --- Monte Carlo method --- proximity function --- electrons scattering --- technogenic Co–Cr–Mo alloy --- electron beam recycling --- refining process --- degree of removal
Choose an application
Semi-solid metal (SSM) processing, as a viable alternative manufacturing route to those of conventional casting and forging, has not yet been fully exploited despite nearly half a century since its introduction to the metal industry. The slow pace of adopting SSM routes may be due to various reasons, including capital costs, profit margins, and, most importantly, the lack of detailed analysis of various SSM processes in open literature to confidently establish their advantages over more conventional routes. Therefore, the SSM community must disseminate their findings more effectively to generate increased confidence in SSM processes in the eyes of our industrial leaders. As such, we have embarked on the task to invite the leaders in SSM research to share their findings in a Special Issue dedicated to semi-solid processing of metals and composites. SSM processing takes advantage of both forming and shaping characteristics usually employed for liquid and solid materials. In the absence of shear forces, the semi-solid metal has similar characteristics to solids, i.e., easily transferred and shaped; by applying a defined force, the viscosity is reduced and the material flows like a liquid. These unique dual characteristics have made SSM routes attractive alternatives to conventional casting on an industrial scale. With the intention of taking full advantage of SSM characteristics, it is crucial to understand SSM processing, including topics such as solidification and structural evolution, flow behavior through modelling and rheology, new processes and process control, alloy development, and properties in general. This Special Issue focuses on the recent research and findings in the field with the aim of filling the gap between industry and academia, and to shed light on some of the fundamentals of science and technology of semi-solid processing.
History of engineering & technology --- 7075 aluminum alloy --- thixoforming --- post-welding-heat treatment --- electron beam welding (EBW) --- nano-sized SiC particle --- wear rate --- friction coefficient --- rheoformed --- thixoformed --- semi-solid --- microstructure --- mechanical properties --- wear --- corrosion --- Al–Si alloys --- rheocasting --- HPDC --- electrochemical evaluation --- rheological model --- semi-solid state --- Mg alloys --- high-temperature rheology --- rheological properties --- rheology --- semi-solid alloys --- thixotropy --- rheometer --- compression test --- viscosity --- semi-solid material --- A356 alloy --- electromagnetic stirring --- compression --- primary α-Al particle --- enclosed cooling slope channel --- ZCuSn10P1 --- microstructure refinement --- properties --- thixowelding --- thixojoining --- semisolid joining --- cold-work tool steel --- semisolid processing --- thixoformability --- Fe-rich Al-Si-Cu alloy --- 2024 aluminum matrix composites --- Al2O3 nanoparticles --- polarized light microscopy --- anodic etching --- EBSD --- grain --- globule --- Al-Si alloy --- semi-solid metal processing --- EMS --- thixocasting --- n/a --- Al-Si alloys
Choose an application
Engineering practice has revealed that innovative technologies’ structural applications require new design concepts related to developing materials with mechanical properties tailored for construction purposes. This would allow the efficient use of engineering materials. The efficiency can be understood in a simplified and heuristic manner as the optimization of performance and the proper combination of structural components, leading to the consumption of the least amount of natural resources. The solution to the eco-optimization problem, based on the adequate characterization of the materials, will enable implementing environmentally friendly engineering principles when the efficient use of advanced materials guarantees the required structural safety. Identifying fundamental relationships between the structure of advanced composites and their physical properties is the focus of this book. The collected articles explore the development of sustainable composites with valorized manufacturability corresponding to Industrial Revolution 4.0 ideology. The publications, amongst others, reveal that the application of nano-particles improves the mechanical performance of composite materials; heat-resistant aluminium composites ensure the safety of overhead power transmission lines; chemical additives can detect the impact of temperature on concrete structures. This book demonstrates that construction materials’ choice has considerable room for improvement from a scientific viewpoint, following heuristic approaches.
Technology: general issues --- steel fiber reinforced concrete (SFRC) --- slender beams --- cyclic loading --- hysteretic response --- failure mode --- tests --- aluminum honeycomb --- deformation modes --- shock wave --- counter-intuitive behavior --- energy distribution --- acoustic stealth --- acoustic coating --- passive sound absorption --- active sound absorption --- acoustic characteristics of a submarine --- finite element method (FEM) --- slip --- group studs --- composite beam --- accelerated bridge construction --- steel fiber --- in situ amorphous coating --- laser surface remelting --- Ti-based alloy --- pipeline steel --- toughness --- cleavage unit --- crack propagation --- misorientation angles --- CFRP laminate --- mechanically fastened joints --- gradient material model --- dissimilar welding materials --- electron-beam welding --- fracture morphology --- fracture toughness --- crack deflection --- three-point bending test --- irreversible thermochromic --- cement composite --- manganese violet --- temperature indication --- heat monitoring --- cold-formed profiles --- high-strength steel --- local deformations --- bending test --- load-bearing capacity --- FRP --- concrete --- damage --- synergy --- strengthening --- finite element analysis --- composite material --- tribology --- vibrations --- resonance zone --- aluminum alloys --- composite materials --- epoxy resins --- power cables --- transmission lines --- CFRP --- NSM --- bond behavior --- structural behavior --- material characterization --- numerical modeling --- reinforced concrete --- steel fiber-reinforced concrete (SFRC) --- tension softening --- tension stiffening --- finite element (FE) analysis --- smeared crack model --- constitutive analysis --- residual stresses --- flexural behavior --- numerical analysis --- cyclic tests --- direct tension tests --- residual stiffness --- shear --- flexure --- shape memory alloys --- thermal environment --- composite laminates --- sound radiation --- 3D warp interlock fabric --- warp yarn interchange ratio --- mechanical test --- mechanical characterization --- fiber-reinforced composite --- soft body armor --- para-aramid fiber --- metal matrix composites --- SiC --- AZ91 --- magnesium alloy --- Cu-Cr system --- mechanical alloying --- solid solubility extension --- structural evolution --- thermodynamic --- n/a
Listing 1 - 3 of 3 |
Sort by
|