Listing 1 - 10 of 24 | << page >> |
Sort by
|
Choose an application
Advances in next-generation sequencing technologies (NGS) are revolutionizing the field of food microbiology. Microbial whole genome sequencing (WGS) can provide identification, characterization, and subtyping of pathogens for epidemiological investigations at a level of precision previously not possible. This allows for connections and source attribution to be inferred between related isolates that may be overlooked by traditional techniques. The archiving and global sharing of genome sequences allow for retrospective analysis of virulence genes, antimicrobial resistance markers, mobile genetic elements and other novel genes. The advent of high-throughput 16S rRNA amplicon sequencing, in combination with the advantages offered by massively parallel second-generation sequencing for metagenomics, enable intensive studies on the microbiomes of food products and the impact of foods on the human microbiome. These studies may one day lead to the development of reliable culture-independent methods for food monitoring and surveillance. Similarly, RNA-seq has provided insights into the transcriptomes and hence the behaviour of bacterial pathogens in food, food processing environments, and in interaction with the host at a resolution previously not achieved through the use of microarrays and/or RT-PCR. The vast un-tapped potential applications of NGS along with its rapidly declining costs, give this technology the ability to contribute significantly to consumer protection, global trade facilitation, and increased food safety and security. Despite the rapid advances, challenges remain. How will NGS data be incorporated into our existing global food safety infrastructure? How will massive NGS data be stored and shared globally? What bioinformatics solutions will be used to analyse and optimise these large data sets? This Research Topic discusses recent advances in the field of food microbiology made possible through the use of NGS.
Salmonella --- Norovirus --- Foodborne --- Listeria --- Food Safety --- Food Microbiology --- Next Generation Sequencing --- Whole Genome Sequencing --- Microbiome --- Vibrio
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Choose an application
Pathogenic Escherichia coli strains cause a large number of diseases in humans, including diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, urinary tract infections, and neonatal meningitis, while in animals they cause diseases such as calf scours and mastitis in cattle, post-weaning diarrhea and edema disease in pigs, and peritonitis and airsacculitis in chickens. The different E. coli pathotypes are characterized by the presence of specific sets of virulence-related genes. Therefore, it is not surprising that pathogenic E. coli constitutes a genetically heterogeneous family of bacteria, and they are continuing to evolve. Rapid and accurate molecular methods are critically needed to detect and trace pathogenic E. coli in food and animals. They are also needed for epidemiological investigations to enhance food safety, as well as animal and human health and to minimize the size and geographical extent of outbreaks. The serotype of E. coli strains has traditionally been determined using antisera raised against the >180 different O- (somatic) and 53 H- (flagellar) antigens. However, there are many problems associated with serotyping, including: it is labor-intensive and time consuming; cross reactivity of the antisera with different serogroups occurs; antisera are available only in specialized laboratories; and many strains are non-typeable. Molecular serotyping targeting O-group-specific genes within the E. coli O-antigen gene clusters and genes that are involved in encoding for the different flagellar types offers an improved approach for determining the E. coli O- and H-groups. Furthermore, molecular serotyping can be coupled with determination of specific sets of virulence genes carried by the strain offering the possibility to determine O-group, pathotype, and the pathogenic potential simultaneously. Sequencing of the O-antigen gene clusters of all of the known O-groups of E. coli is now complete, and the sequences have been deposited in the GenBank database. The sequence information has revealed that some E. coli serogroups have identical sequences while others have point mutations or insertion sequences and type as different serogroups in serological reactions. There are also a number of other ambiguities in serotyping that need to be resolved. Furthermore, new E. coli O-groups are being identified. Therefore, there is an essential need to resolve these issues and to revise the E. coli serotype nomenclature based on these findings. There are emerging technologies that can potentially be applied for molecular serotyping and detection and characterization of E. coli. On a related topic, the genome sequence of thousands of E. coli strains have been deposited in GenBank, and this information is revealing unique markers such as CRISPR (clustered regularly interspaced short palindromic repeats) and virulence gene markers that could be used to identify E. coli pathotypes. Whole genome sequencing now provides the opportunity to study the role of horizontal gene transfer in the evolution and emergence of pathogenic E. coli strains. Whole genome sequencing approaches are being investigated for genotyping and outbreak investigation for regulatory and public health needs; however, there is a need for establishing bioinformatics pipelines able to handle large amounts of data as we move toward the use of genetic approaches for non-culture-based detection and characterization of E. coli and for outbreak investigations.
whole genome sequencing --- detection --- pathogenic E. coli --- E. coli characterization --- Molecular serotyping --- Genetic Markers --- subtyping --- outbreak investigation --- Shiga toxin-producing E. coli --- virulence genes
Choose an application
Pathogenic Escherichia coli strains cause a large number of diseases in humans, including diarrhea, hemorrhagic colitis, hemolytic uremic syndrome, urinary tract infections, and neonatal meningitis, while in animals they cause diseases such as calf scours and mastitis in cattle, post-weaning diarrhea and edema disease in pigs, and peritonitis and airsacculitis in chickens. The different E. coli pathotypes are characterized by the presence of specific sets of virulence-related genes. Therefore, it is not surprising that pathogenic E. coli constitutes a genetically heterogeneous family of bacteria, and they are continuing to evolve. Rapid and accurate molecular methods are critically needed to detect and trace pathogenic E. coli in food and animals. They are also needed for epidemiological investigations to enhance food safety, as well as animal and human health and to minimize the size and geographical extent of outbreaks. The serotype of E. coli strains has traditionally been determined using antisera raised against the >180 different O- (somatic) and 53 H- (flagellar) antigens. However, there are many problems associated with serotyping, including: it is labor-intensive and time consuming; cross reactivity of the antisera with different serogroups occurs; antisera are available only in specialized laboratories; and many strains are non-typeable. Molecular serotyping targeting O-group-specific genes within the E. coli O-antigen gene clusters and genes that are involved in encoding for the different flagellar types offers an improved approach for determining the E. coliO- and H-groups. Furthermore, molecular serotyping can be coupled with determination of specific sets of virulence genes carried by the strain offering the possibility to determine O-group, pathotype, and the pathogenic potential simultaneously. Sequencing of the O-antigen gene clusters of all of the known O-groups of E. coli is now complete, and the sequences have been deposited in the GenBank database. The sequence information has revealed that some E. coli serogroups have identical sequences while others have point mutations or insertion sequences and type as different serogroups in serological reactions. There are also a number of other ambiguities in serotyping that need to be resolved. Furthermore, new E. coli O-groups are being identified. Therefore, there is an essential need to resolve these issues and to revise the E. coli serotype nomenclature based on these findings. There are emerging technologies that can potentially be applied for molecular serotyping and detection and characterization of E. coli. On a related topic, the genome sequence of thousands of E. coli strains have been deposited in GenBank, and this information is revealing unique markers such as CRISPR (clustered regularly interspaced short palindromic repeats) and virulence gene markers that could be used to identify E. coli pathotypes. Whole genome sequencing now provides the opportunity to study the role of horizontal gene transfer in the evolution and emergence of pathogenic E. coli strains. Whole genome sequencing approaches are being investigated for genotyping and outbreak investigation for regulatory and public health needs; however, there is a need for establishing bioinformatics pipelines able to handle large amounts of data as we move toward the use of genetic approaches for non-culture-based detection and characterization of E. coli and for outbreak investigations.
whole genome sequencing --- detection --- pathogenic E. coli --- E. coli characterization --- Molecular serotyping --- Genetic Markers --- subtyping --- outbreak investigation --- Shiga toxin-producing E. coli --- virulence genes
Choose an application
PacBio’s single-molecule real-time (SMRT) sequencing technology offers important advantages over the short-read DNA sequencing technologies that currently dominate the market. This includes exceptionally long read lengths (20 kb or more), unparalleled consensus accuracy, and the ability to sequence native, non-amplified DNA molecules. From fungi to insects to humans, long reads are now used to create highly accurate reference genomes by de novo assembly of genomic DNA and to obtain a comprehensive view of transcriptomes through the sequencing of full-length cDNAs. Besides reducing biases, sequencing native DNA also permits the direct measurement of DNA base modifications. Therefore, SMRT sequencing has become an attractive technology in many fields, such as agriculture, basic science, and medical research. The boundaries of SMRT sequencing are continuously being pushed by developments in bioinformatics and sample preparation. This book contains a collection of articles showcasing the latest developments and the breadth of applications enabled by SMRT sequencing technology.
n/a --- Cladobotryum protrusum --- allele-specific analysis --- low-input DNA --- full length RNAseq --- de novo genome assembly --- de novo assembly --- human reference genome --- Tricoplusia ni --- PacBio single molecule real-time sequencing --- secondary metabolite --- protein isoforms --- bone marrow cell subpopulations --- DNA methylation --- mycoparasite --- human whole-genome sequencing --- GRCh38 --- SMRT sequencing --- cytochrome P450 enzyme (CYP) --- mRNA isoforms --- next generation sequencing --- cobweb disease --- Swedish population --- mosquito --- long-read SMRT sequencing --- whole genome sequencing --- terpenoid --- insect genome --- optical mapping --- Gloeostereum incarnatum --- population sequencing --- statistical methods --- gene expression --- single molecule real-time sequencing --- PacBio
Choose an application
Clinical Genome Sequencing: Psychological Aspects thoroughly details key psychological factors to consider while implementing genome sequencing in clinical practice, taking into account the subtleties of genetic risk assessment, patient consent and best practices for sharing genomic findings. Chapter contributions from leading international researchers and practitioners cover topics ranging from the current state of genomic testing, to patient consent, patient responses to sequencing data, common uncertainties, direct-to-consumer genomics, the role of genome sequencing in precision medicine, genetic counseling and genome sequencing, genome sequencing in pediatrics, genome sequencing in prenatal testing, and ethical issues in genome sequencing. Applied clinical case studies support concept illustration, making this an invaluable, practical reference for this important and multifaceted topic area within genomic medicine.
Gene mapping. --- Whole Genome Sequencing --- Precision Medicine --- ethics. --- psychology. --- Chromosome mapping --- Genetic mapping --- Genome mapping --- Linkage mapping (Genetics) --- Mapping, Gene --- Genetics --- Technique --- Nucleotide sequence --- Human gene mapping --- Genetic counseling --- Genetic Counseling --- Genetic Testing --- Base Sequence --- Moral and ethical aspects. --- Psychological aspects. --- psychology
Choose an application
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact
Science: general issues --- Medical microbiology & virology --- Microbiology (non-medical) --- Methicillin resistant Staphylococcus aureus (MRSA) --- Methicillin susceptible S. aureus (MSSA) --- MRSA protracted outbreaks --- Whole-genome sequencing --- evolution --- Molecular Epidemiology --- antimicrobial resistance --- Point of Care Testing --- staphylococcal mobile genetic elements --- staphylococcal cassette chromosome mec (SCCmec)
Choose an application
In recent years, marine genomics has become a growning rapidly field, helped by the large amount of information that is becoming available to the international scientific community. Taking into account the current excitement in the field of marine biotechnology, this Special Issue entitled “Genome Mining and Synthetic Biology in Marine Natural Product Discovery” aims to to assess the impact of these molecular approaches on the discovery of bioactive compounds from marine organisms. The term “genome mining” is used to identify all bioinformatic investigations aimed at detecting the biosynthetic pathways of bioactive natural products and their possible functional and chemical interactions. Several studies are now reporting on marine organisms. Oceans cover nearly 70% of the Earth’s surface and host a huge ecological, chemical, and biological diversity. The natural conditions of the sea favor, in marine organisms, the production of a large variety of novel molecules with great pharmaceutical potential. Marine organisms are unique in their structural and functional features compared to terrestrial ones. Innovation in this field is very rapid, as revealed by the funding of several Seventh Framework Programme (FP7) and Horizon 2020 projects under the topic “Blue Growth”, with the urgent goal of discovering new drugs.
Technology: general issues --- genome mining --- global regulator --- LaeA --- overexpression --- Penicillium dipodomyis --- sorbicillinoids --- ulvan-derived oligosaccharides --- ulvan lyase --- heterologous expression --- polysaccharide lyase family 25 --- whole-genome sequencing --- docosahexaenoic acid (DHA) --- polyunsaturated fatty acid --- fatty acid synthesis pathway --- polyketide synthase pathway --- bacteria --- fungi --- natural products --- synthetic biology --- microalgae --- monogalactosyldiacylglycerol synthase --- UDP-sulfoquinovose synthase --- sulfoquinovosyltransferase --- monogalactosyldiacylglycerols --- sulfoquinovosyldiacylglycerols --- transcriptome analysis --- n/a
Choose an application
This compilation of articles elaborates on plant virus diseases that are among the most recent epidemiological concerns. The chapters explore several paradigms in plant virus epidemiology, outbreaks, epidemics, and pandemics paralleling zoonotic viruses and that can be consequential to global food security. There is evidence that the local, regional, national, and global trade of agricultural products has aided the global dispersal of plant virus diseases. Expanding farmlands into pristine natural areas has created opportunities for viruses in native landscapes to invade crops, while the movement of food and food products disseminates viruses, creating epidemics or pandemics. Moreover, plant virus outbreaks not only directly impact food supply, but also incidentally affect human health.
Research & information: general --- sugar beet --- rhizomania --- RNAseq --- virus --- necrovirus --- helper virus --- Aphis gossypii --- Cucumis melo --- cucurbit viruses --- disease progress curve --- insect trapping --- logistic model --- Spearman correlation --- temporal dynamics --- Bunyavirale --- RNA virus --- emerging virus --- virus evolution --- plant virus --- cophylogeny --- hallmark genes --- common bean --- Phaseolus vulgaris --- cytorhabdovirus --- whitefly --- Bemisia tabaci --- vector --- virus transmission --- ToTV --- emerging disease --- prevalence --- whole-genome sequencing --- phylogeny --- tomato torrado virus --- sGFP --- plant pathology --- infectious clone --- plant-virus interaction --- pandemics --- epidemics --- global --- disease --- threat --- food insecurity --- crop losses --- crop failure --- indigenous viruses --- introduced crops --- new encounter --- spillover --- developing countries --- domestication centers --- sub–Saharan Africa --- Potyviruses --- whole genome sequencing --- epidemiology --- virus resistance --- virus host interactions --- plant viruses --- viral vectors --- plant diseases --- virus spread --- biopharming --- vaccines --- viruses --- Nicotiana benthamiana --- COVID-19 --- plant-based biologics production --- n/a --- sub-Saharan Africa
Listing 1 - 10 of 24 | << page >> |
Sort by
|