Listing 1 - 10 of 68 | << page >> |
Sort by
|
Choose an application
Aerospace engineering --- Aerospace engineering. --- Aeronautical engineering --- aircraft --- UAV --- aircraft maintenance --- aircraft safety --- Aeronautics --- Astronautics --- Engineering --- uav
Choose an application
Earth Observations (EO) encompasses different types of sensors (e.g., SAR, LiDAR, Optical and multispectral) and platforms (e.g., satellites, aircraft, and Unmanned Aerial Vehicles) and enables us to monitor and model geohazards over regions at different scales in which ground observations may not be possible due to physical and/or political constraints. EO can provide high spatial, temporal and spectral resolution, stereo-mapping and all-weather-imaging capabilities, but not by a single satellite at a time. Improved satellite and sensor technologies, increased frequency of satellite measurements, and easier access and interpretation of EO information have all contributed to the increased demand for satellite EO data. EO, combined with complementary terrestrial observations and with physical models, have been widely used to monitor geohazards, revolutionizing our understanding of how the Earth system works.
LiDAR --- InSAR --- remote sensing --- earthquake --- UAV --- landslide --- land subsidence --- earth observation --- surface displacement --- geohazards --- deformation --- optical --- damage assessment
Choose an application
UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects.
Information technology industries --- direction-of-arrival estimation --- unmanned aerial vehicles --- UAV swarm --- aperiodic arrays --- MUSIC --- Cramer–Rao bound --- stochastic system --- configuration control --- multiplicative noises --- dynamic model --- stochastic robustness analysis and design --- wireless sensor networks --- unmanned aerial vehicle --- mission completion time --- trajectory planning --- UAV secure communication --- secrecy rate maximization --- jamming --- trajectory design --- power control --- sensors --- data collection utility --- GPS measurement --- UAV --- 3D models --- measurement precision --- unmanned aerial vehicle (UAV) --- cooperative communication --- topology structure --- complex field network coding (CFNC) --- edge computing --- internet of things --- mobile robots --- resource allocation --- control co-design --- data offloading --- UAV-enabled computing --- resource-based pricing --- risk-awareness --- multi-access edge computing systems --- UAV fleet --- energy consumption --- self-organization --- algorithms --- optimization --- UAV replacement --- multiple unmanned aerial vehicles --- mobile nodes --- data collection --- collision-free --- synchronized multi-agent formation --- decentralized sliding mode control --- drones --- wireless --- swarm --- communication
Choose an application
The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out.
Technology: general issues --- History of engineering & technology --- unmanned aerial vehicle --- UAV positioning --- machine learning --- wireless communications --- drones --- network --- DTN --- mobility schedule --- routing algorithms --- data delivery --- Internet of drones --- communication --- security --- privacy --- UAV base station --- MIMO --- millimeter-wave band --- blind beamforming --- signal recovery --- UAV relay networks --- resource management --- transmit time allocation --- unmanned aerial vehicles --- dynamic spectrum access --- quality of service --- reinforcement learning --- multi-armed bandit --- aerial communication --- FANET --- not-spots --- stratospheric communication platform --- UAV --- UAV-assisted network --- 5G --- global positioning system --- GPS spoofing attacks --- detection techniques --- dynamic selection --- hyperparameter tuning --- IoT --- RF radio communication --- Wi-Fi direct --- D2D --- drone-based mobile secure zone --- friendly jamming --- mobility --- internet of things --- non-orthogonal multiple access --- resource allocation --- ultra reliable low latency communication --- uplink transmission --- Deep Q-learning (DQL) --- Double Deep Q-learning (DDQL) --- dynamic spectrum sharing --- High Altitude Platform Station (HAPS) --- cellular communications --- power control --- interference management --- cognitive UAV networks --- clustered two-stage-fusion cooperative spectrum sensing --- continuous hidden Markov model --- SNR estimation --- n/a
Choose an application
In deze pocket bespreken we drones in ruime zin voor zowel de professionele als de recreatieve gebruiker aan de hand van een praktische vraag/antwoord structuur. We leggen op een bevattelijke wijze uit hoe het dronelandschap er vandaag uitziet, geïllustreerd met beeldmateriaal, schema’s, modellen, wetteksten, etc. De gehanteerde multidisciplinaire, praktische en integrale visie moet bijdragen tot een goed en veilig gebruik van drones in het Belgische luchtruim. Op die manier hoeven drones in de toekomst geen bedreiging te vormen, maar een nieuwe en innovatieve technologie in volle ontwikkeling met heel veel potentieel.
General ethics --- Criminal law. Criminal procedure --- E-books --- drones --- UAV --- UAS --- RPAS --- PXL-Central Office 2017 --- luchtverkeer --- regelgeving --- nieuwe technologiën --- jurisquare --- 202106
Choose an application
This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks. The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management. The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists.
Mobile & handheld device programming / Apps programming --- WAP (wireless) technology --- Electrical engineering --- Computing & information technology --- Open Access --- mobile edge computing --- 5G beyond --- 6G --- edge caching --- Internet of Things --- UAV
Choose an application
Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance.
n/a --- super twisting sliding mode controller (STSMC) --- monocular visual SLAM --- modulation --- bio-inspiration --- simulation --- horizontal control --- sensor fusion --- ADRC --- high-order sliding mode --- over-the-horizon air confrontation --- longitudinal motion model --- autonomous control --- real-time ground vehicle detection --- maneuver decision --- nonlinear dynamics --- UAV automatic landing --- harmonic extended state observer --- image processing --- General Visual Inspection --- actuator faults --- actuator fault --- remote sensing --- aerial infrared imagery --- agricultural UAV --- SC-FDM --- tilt rotors --- mass eccentricity --- wind disturbance --- decoupling algorithm --- adaptive discrete mesh --- disturbance --- super twisting extended state observer (STESO) --- heuristic exploration --- sliding mode control --- UAS --- Q-Network --- UAV communication system --- UAV --- reinforcement learning --- autonomous landing area selection --- peak-to-average power ratio (PAPR) --- slung load --- aircraft maintenance --- flight mechanics --- octree --- unmanned aerial vehicle --- convolutional neural network --- aircraft --- performance evaluation --- quadrotor --- vertical take off --- data link --- path planning --- coaxial-rotor --- fixed-time extended state observer (FTESO) --- multi-UAV system --- hardware-in-the-loop --- distributed swarm control --- vertical control
Choose an application
Unmanned aerial vehicles (UAV) have already become an affordable and cost-efficient tool to quickly map a targeted area for many emerging applications in the arena of ecological monitoring and biodiversity conservation. Managers, owners, companies, and scientists are using professional drones equipped with high-resolution visible, multispectral, or thermal cameras to assess the state of ecosystems, the effect of disturbances, or the dynamics and changes within biological communities inter alia. We are now at a tipping point on the use of drones for these type of applications over natural areas. UAV missions are increasing but most of them are testing applicability. It is time now to move to frequent revisiting missions, aiding in the retrieval of important biophysical parameters in ecosystems or mapping species distributions. This Special Issue shows UAV applications contributing to a better understanding of biodiversity and ecosystem status, threats, changes, and trends. It documents the enhancement of knowledge in ecological integrity parameters mapping, long-term ecological monitoring based on drones, mapping of alien species spread and distribution, upscaling ecological variables from drone to satellite images: methods and approaches, rapid risk and disturbance assessment using drones, mapping albedo with UAVs, wildlife tracking, bird colony and chimpanzee nest mapping, habitat mapping and monitoring, and a review on drones for conservation in protected areas.
Pinus nigra --- unmanned aerial vehicles (UAVs) --- biological conservation --- precision --- flight altitude --- accuracy --- multiscale approach --- low-cost UAV --- LTER --- small UAV --- ecological monitoring --- Sequoia --- long-term monitoring --- albedo --- image processing --- vegetation indices --- Tanzania --- ground-truth --- Sentinel-2 --- biodiversity threats --- field experiments --- effective management --- great apes --- drone --- ecological integrity --- multispectral --- rice crops --- conservation --- protected areas --- survey --- response surface --- aerial survey --- bird censuses --- multispectral mapping --- drones --- UAS --- hyperspectral --- UAV --- random forest --- Pinus sylvestris --- NDVI --- UAVs --- Parrot Sequoia --- supervised classification --- drone mapping --- RPAS --- greenness index --- image resolution --- Plegadis falcinellus --- Motus --- biodiversity --- Landsat 8 --- Sentinel --- boreal forest --- phenology --- LTSER --- western swamphen --- Parrot SEQUOIA --- native grassland --- forêt Montmorency --- drought --- forest regeneration --- radio-tracking
Choose an application
The concept of remote sensing as a way of capturing information from an object without making contact with it has, until recently, been exclusively focused on the use of Earth observation satellites.The emergence of unmanned aerial vehicles (UAV) with Global Navigation Satellite System (GNSS) controlled navigation and sensor-carrying capabilities has increased the number of publications related to new remote sensing from much closer distances. Previous knowledge about the behavior of the Earth's surface under the incidence different wavelengths of energy has been successfully applied to a large amount of data recorded from UAVs, thereby increasing the special and temporal resolution of the products obtained.More specifically, the ability of UAVs to be positioned in the air at pre-programmed coordinate points; to track flight paths; and in any case, to record the coordinates of the sensor position at the time of the shot and at the pitch, yaw, and roll angles have opened an interesting field of applications for low-altitude aerial photogrammetry, known as UAV photogrammetry. In addition, photogrammetric data processing has been improved thanks to the combination of new algorithms, e.g., structure from motion (SfM), which solves the collinearity equations without the need for any control point, producing a cloud of points referenced to an arbitrary coordinate system and a full camera calibration, and the multi-view stereopsis (MVS) algorithm, which applies an expanding procedure of sparse set of matched keypoints in order to obtain a dense point cloud. The set of technical advances described above allows for geometric modeling of terrain surfaces with high accuracy, minimizing the need for topographic campaigns for georeferencing of such products.This Special Issue aims to compile some applications realized thanks to the synergies established between new remote sensing from close distances and UAV photogrammetry.
Technology: general issues --- unmanned aerial vehicle --- urban LULC --- GEOBIA --- multiscale classification --- unmanned aircraft system (UAS) --- deep learning --- super-resolution (SR) --- convolutional neural network (CNN) --- generative adversarial network (GAN) --- structure-from-motion --- photogrammetry --- remote sensing --- UAV --- 3D-model --- surveying --- vertical wall --- snow --- remotely piloted aircraft systems --- structure from motion --- lidar --- forests --- orthophotography --- construction planning --- sustainable construction --- urbanism --- BIM --- building maintenance --- unmanned aerial vehicle (UAV) --- structure-from-motion (SfM) --- ground control points (GCP) --- accuracy assessment --- point clouds --- corridor mapping --- UAV photogrammetry --- terrain modeling --- vegetation removal --- unmanned aerial vehicles --- power lines --- image-based reconstruction --- 3D reconstruction --- unmanned aerial systems --- time series --- accuracy --- reproducibility --- orthomosaic --- validation --- drone --- GNSS RTK --- precision --- elevation --- multispectral imaging --- vegetation indices --- nutritional analysis --- correlation --- optimal harvest time --- UAV images --- monoscopic mapping --- stereoscopic plotting --- image overlap --- optimal image selection --- n/a
Choose an application
This book is the first literature collection focused on the development and implementation of unmanned aircraft systems (UAS) and their integration with sensors for atmospheric measurements on Earth. The research covered in the book combines chemical, physical, and meteorological measurements performed in field campaigns, as well as conceptual and laboratory work. Useful examples for the development of platforms and autonomous systems for environmental studies are provided, which demonstrate how careful the operation of sensors aboard UAS must be to gather information for remote sensing in the atmosphere. The work serves as a key collection of articles to introduce the topic to new researchers interested in the field, guide future studies, and motivate measurements to improve our understanding of the Earth’s complex atmosphere.
Research & information: general --- unmanned aerial vehicles (UAV) --- drones --- geostatistics --- atmospheric physics --- meteorology --- spatial sampling --- unmanned aerial vehicles --- unmanned aerial systems, turbulence --- atmospheric boundary layer --- TK-1G sounding rocket --- near space --- data analysis --- remote sensing --- unmanned aerial systems --- atmospheric composition --- sensors --- UAS --- RPAS --- ALADINA --- airborne turbulence --- radiation measurements --- aerosol measurements --- field experiments --- validation methods --- unmanned aircraft --- meteorological observation --- stable atmospheric boundary layer --- turbulence --- remotely piloted aircraft systems (RPAS) --- ground-based in-situ observations --- boundary layer remote sensing --- Arctic --- polar --- sea ice --- n/a --- source estimation --- methane emissions --- natural gas --- leak surveys --- inverse emissions --- MONITOR --- UAV --- LDAR --- air pollution --- unmanned aerial vehicle (UAV) --- PM2.5 --- meteorological condition --- long-distance transport --- satellite data --- RMLD-UAV --- methane --- mass flux --- leak rate quantification --- wind speed and direction estimation algorithms --- flow probes --- airspeed measurement --- small unmanned aircraft systems (sUAS)
Listing 1 - 10 of 68 | << page >> |
Sort by
|