Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The contribution of genomic variants to the aetiopathogenesis of both paediatric and adult neurological disease is being increasingly recognized. The use of next-generation sequencing has led to the discovery of novel neurodevelopmental disorders, as exemplified by the deciphering developmental disorders (DDD) study, and provided insight into the aetiopathogenesis of common adult neurological diseases. Despite these advances, many challenges remain. Correctly classifying the pathogenicity of genomic variants from amongst the large number of variants identified by next-generation sequencing is recognized as perhaps the major challenge facing the field. Deep phenotyping (e.g., imaging, movement analysis) techniques can aid variant interpretation by correctly classifying individuals as affected or unaffected for segregation studies. The lack of information on the clinical phenotype of novel genetic subtypes of neurological disease creates limitations for genetic counselling. Both deep phenotyping and qualitative studies can capture the clinical and patient’s perspective on a disease and provide valuable information. This Special Issue aims to highlight how next-generation sequencing techniques have revolutionised our understanding of the aetiology of brain disease and describe the contribution of deep phenotyping studies to a variant interpretation and understanding of natural history.
polymicrogyria --- n/a --- neurodegenerative disease --- next generation sequencing (NGS) --- inborn error of metabolism --- genetic biomarker --- deep learning --- TUBA1A --- Alzheimer’s disease (AD) --- ataxia --- risk prediction --- p.(Arg2His) --- movement science --- tubulin --- R2H --- diagnosis --- machine learning --- metal storage disorders --- amyotrophic lateral sclerosis (ALS) --- glucocerebrosidase --- Parkinsonism --- cerebellar hypoplasia --- Gaucher disease --- disease phenotyping --- tubulinopathy --- Parkinson’s disease (PD) --- dementia --- Parkinson’s disease --- Neurogenetics. --- Nervous system --- Genetics --- Neurosciences --- Genetic aspects --- Alzheimer's disease (AD) --- Parkinson's disease (PD) --- Parkinson's disease
Choose an application
Cardiology and cardiovascular sciences are two rapidly growing areas in medicine, with heart diseases being the number one cause of death worldwide. The last four decades have witnessed many developments in various cardiological sciences, including coronary artery disease, valve disease, heart failure, congenital heart diseases, and cardiovascular imaging, with a number of newly developed concepts, such as cardio-oncology, cardio-renal diseases, and preventive cardiology. This Special Issue (SI) of the Journal of Clinical Medicine, entitled “JCM-Advances in Cardiology”, focuses on recent advances in the cardiological sciences. It published 8 research articles of significant clinical and scientific value.
Medicine --- Pharmacology --- ST segment elevation myocardial infarction --- COVID-19 --- primary percutaneous intervention --- Coptic clergy --- mortality --- cardiovascular risk factors --- prevalence --- major adverse events --- obesity --- ACE2 --- renin–angiotensin system --- extraction --- reimplantation --- pacing --- ICD --- CRT --- dilated cardiomyopathy (DCM) --- LMNA --- lamin A --- lamin C --- next generation sequencing (NGS) --- myocarditis --- arrhythmias --- telemonitoring --- implantable cardioverter defibrillator --- implantable loop recorder --- Holter ECG --- metabolic-dysfunction-associated fatty liver disease (MAFLD) --- hepatic steatosis --- SteatoTest --- adipokines --- adiponectin --- visfatin --- cardiovascular disease --- n/a --- renin-angiotensin system
Choose an application
In the era of precision medicine, the use of molecularly targeted therapies in selected patients has led to a paradigm change in cancer treatment. Multiple studies have demonstrated the benefits of therapies that are chosen based on the molecular profile of the tumor and also from the liquid biopsy. With genomics' increasing ability, a routine transcriptomics analysis of advanced/metastatic cancers is now feasible in most cancer hospitals, including community cancer centers. This is an unprecedented shift in the management of cancers irrespective of their organ types, which not only improved the outcome but also opened several new avenues in research and practice, such as immune-check-point inhibitors, tumor-TME co-evolution in the development of resistance, longitudinal liquid biopsies, biomarkers screening and the management of electronic medical records.This book brings together these crucial areas of investigation. The research presented here attempts to address the current issues to provoke thoughts for the future. The future of precision medicine will have to embrace a shift from in vitro, in vivo/PDX models for the mechanistic study to a more functional test based on the scientific interrogation of genomic data, in the form of functional precision medicine. We will also have to combat the element of noise in the multitudes of data and impart the regulatory structure to make judicious use of the data. The expectations for functional precision medicine are high. We aspire to witness a tremendous improvement in patient outcomes, from better to best, down the road that will match the clinical guidelines.
Medicine --- Oncology --- pediatric tumors --- tumor mutational burden --- TMB --- whole-exome sequencing --- gene panel sequencing --- immune checkpoint inhibitors --- glioblastoma prognosis --- overall survival --- extent of resection --- random forest --- Decision tree --- personalized precision oncology --- circulating free DNA --- liquid biopsy --- epidermal growth factor receptor --- tyrosine kinase inhibitor --- osimertinib --- comprehensive genomic profiling --- molecular genotyping --- intratumor heterogeneity --- multiple biopsies --- tumor evolution --- clonality classification --- strategic therapeutic intervention --- thymoma --- driver mutation --- sequencing --- molecular barcoding --- EGFR mutation --- EGFR-TKI --- cfDNA --- NGS --- digital enrichment --- next-generation sequencing --- solid cancer --- universal health-care system --- precision medicine --- presumed germline findings --- clinical guideline --- non-small cell lung cancer --- outcome --- adjuvant chemotherapy --- anaplastic lymphoma receptor tyrosine kinase --- HNSCC --- ctDNA --- tDNA --- DDR genes --- PARP inhibitors --- new drug development --- next-generation sequencing (NGS) --- open data --- regulatory reform --- tumor profiling test --- triple-negative breast cancer (TNBC) --- breast cancer --- targeted therapy --- TNBC subtypes --- immunotherapy --- cancer --- screening --- smoking --- electronic records --- PD-L1 --- cancer-associated fibroblasts --- resistance --- chemotherapy --- CTC --- immunocytochemistry --- parallel double-detection --- laboratory-friendly --- n/a
Choose an application
This compilation focuses on recent advances in the molecular and cellular understandingof neuromuscular biology, and the treatment of neuromuscular disease.These advances are at the forefront of modern molecular methodologies, oftenintegrating across wet-lab cell and tissue models, dry-lab computational approaches,and clinical studies. The continuing development and application ofmultiomics methods offer particular challenges and opportunities in the field,not least in the potential for personalized medicine.
Research & information: general --- LMNA --- Emery–Dreifuss muscular dystrophy --- Omics --- ALS --- MND --- ALS variants --- genotype–phenotype --- ALS genes --- FSHD --- DUX4 --- transcription --- muscle --- regulation --- spinal muscular atrophy --- adult patients --- disease heterogeneity --- Nusinersen --- disease modifiers --- functional outcomes --- biomarkers --- epigenetic changes --- -omics approaches --- oxidative stress --- mitochondria dysfunction --- axonal transport --- autophagy --- endocytosis --- secretion --- excitotoxicity --- RNA metabolism --- Duchenne muscular dystrophy (DMD) --- exon-skipping therapies --- next-generation sequencing (NGS) --- Sanger sequencing --- multiplex ligation probe amplification (MLPA) --- multiplex polymerase chain reaction (PCR) --- comparative genomic hybridization array (CGH) --- viltolarsen --- eteplirsen --- golodirsen --- rheumatoid arthritis --- SNP --- DMARD --- methotrexate --- pharmacogenomics --- Duchenne muscular dystrophy --- pharmacodynamic biomarkers --- prednisone --- deflazacort --- glucocorticoids --- corticosteroids --- safety --- neuromuscular diseases --- translational research --- disease models --- precision medicine --- miRNA --- proteomics --- calprotectin --- dystrophy --- Becker muscular dystrophy --- dystrophinopathy --- genotype-phenotype correlations --- Canadian Neuromuscular Disease Registry --- reading frame rule --- dystrophin --- multiple logistic regression analysis --- exon skipping therapy --- Amyotrophic Lateral Sclerosis --- machine learning --- genome-wide association studies --- GWAS --- genomics --- ALS pathology --- gene prioritization --- AAV --- genetic neuromuscular disorders --- gene therapy --- clinical trials --- toxicity --- SMA --- DMD --- XLMTM --- facioscapulohumeral dystrophy --- TALEN --- CRISPR-Cas9 --- gene editing --- polyadenylation --- D4Z4 --- duchenne muscular dystrophy (DMD) --- becker muscular dystrophy (BMD) --- exon skipping --- skip-equivalent deletions --- n/a --- Emery-Dreifuss muscular dystrophy --- genotype-phenotype
Listing 1 - 4 of 4 |
Sort by
|