Listing 1 - 8 of 8 |
Sort by
|
Choose an application
This book captures advancements in the applications of computational intelligence (artificial intelligence, machine learning, etc.) to problems in the mineral and mining industries. The papers present the state of the art in four broad categories: mine operations, mine planning, mine safety, and advances in the sciences, primarily in image processing applications. Authors in the book include both researchers and industry practitioners.
Technology: general issues --- History of engineering & technology --- truck dispatching --- mining equipment uncertainties --- orebody uncertainty --- discrete event simulation --- Q-learning --- grinding circuits --- minerals processing --- random forest --- decision trees --- machine learning --- knowledge discovery --- variable importance --- mineral prospectivity mapping --- random forest algorithm --- epithermal gold --- unstructured data --- blast impact --- empirical model --- mining --- fragmentation --- mine worker fatigue --- random forest model --- health and safety management --- stockpiles --- operational data --- mine-to-mill --- geostatistics --- ore control --- mine optimization --- digital twin --- modes of operation --- geological uncertainty --- multivariate statistics --- partial least squares regression --- oil sands --- bitumen extraction --- bitumen processability --- mine safety and health --- accidents --- narratives --- natural language processing --- random forest classification --- hyperspectral imaging --- multispectral imaging --- dimensionality reduction --- neighbourhood component analysis --- artificial intelligence --- mining exploitation --- masonry buildings --- damage risk analysis --- Bayesian network --- Naive Bayes --- Bayesian Network Structure Learning (BNSL) --- rock type --- mining geology --- bluetooth beacon --- classification and regression tree --- gaussian naïve bayes --- k-nearest neighbors --- support vector machine --- transport route --- transport time --- underground mine --- tactical geometallurgy --- data analytics in mining --- ball mill throughput --- measurement while drilling --- non-additivity --- coal --- petrographic analysis --- macerals --- image analysis --- semantic segmentation --- convolutional neural networks --- point cloud scaling --- fragmentation size analysis --- structure from motion --- n/a --- gaussian naïve bayes
Choose an application
Each year, natural hazards such as earthquakes, cyclones, flooding, landslides, wildfires, avalanches, volcanic eruption, extreme temperatures, storm surges, drought, etc., result in widespread loss of life, livelihood, and critical infrastructure globally. With the unprecedented growth of the human population, largescale development activities, and changes to the natural environment, the frequency and intensity of extreme natural events and consequent impacts are expected to increase in the future.Technological interventions provide essential provisions for the prevention and mitigation of natural hazards. The data obtained through remote sensing systems with varied spatial, spectral, and temporal resolutions particularly provide prospects for furthering knowledge on spatiotemporal patterns and forecasting of natural hazards. The collection of data using earth observation systems has been valuable for alleviating the adverse effects of natural hazards, especially with their near real-time capabilities for tracking extreme natural events. Remote sensing systems from different platforms also serve as an important decision-support tool for devising response strategies, coordinating rescue operations, and making damage and loss estimations.With these in mind, this book seeks original contributions to the advanced applications of remote sensing and geographic information systems (GIS) techniques in understanding various dimensions of natural hazards through new theory, data products, and robust approaches.
Research & information: general --- Geography --- sequential estimation --- InSAR time series --- groundwater --- land subsidence and rebound --- earthquake --- rapid mapping --- damage assessment --- deep learning --- convolutional neural networks --- ordinal regression --- aerial image --- landslide --- machine learning models --- remote sensing --- ensemble models --- validation --- ice storm --- forest ecosystems --- disaster impact --- post-disaster recovery --- ice jam --- snowmelt --- flood mapping --- monitoring and prediction --- VIIRS --- ABI --- NUAE --- flash flood --- BRT --- CART --- naive Bayes tree --- geohydrological model --- landslide susceptibility --- Bangladesh --- digital elevation model --- random forest --- modified frequency ratio --- logistic regression --- automatic landslide detection --- OBIA --- PBA --- random forests --- supervised classification --- landslides --- uncertainty --- K-Nearest Neighbor --- Multi-Layer Perceptron --- Random Forest --- Support Vector Machine --- agriculture --- drought --- NDVI --- MODIS --- landslide deformation --- InSAR --- reservoir water level --- Sentinel-1 --- Three Gorges Reservoir area (China) --- peri-urbanization --- urban growth boundary demarcation --- climate change --- climate migrants --- natural hazards --- flooding --- land use and land cover --- night-time light data --- Dhaka
Choose an application
Data science is an interdisciplinary field that applies numerous techniques, such as machine learning, neural networks, and deep learning, to create value based on extracting knowledge and insights from available data. Advances in data science have a significant impact on healthcare. While advances in the sharing of medical information result in better and earlier diagnoses as well as more patient-tailored treatments, information management is also affected by trends such as increased patient centricity (with shared decision making), self-care (e.g., using wearables), and integrated care delivery. The delivery of health services is being revolutionized through the sharing and integration of health data across organizational boundaries. Via data science, researchers can deliver new approaches to merge, analyze, and process complex data and gain more actionable insights, understanding, and knowledge at the individual and population levels. This Special Issue focuses on how data science is used in healthcare (e.g., through predictive modeling) and on related topics, such as data sharing and data management.
Medicine --- Pharmacology --- data sharing --- data management --- data science --- big data --- healthcare --- depression --- psychological treatment --- task sharing --- primary care --- pilot study --- non-specialist health worker --- training --- digital technology --- mental health --- COVID-19 --- SARS-CoV-2 --- pneumonia --- computed tomography --- case fatality rate --- social distancing --- smoking --- metabolically healthy obese phenotype --- metabolic syndrome --- obesity --- coronavirus --- machine learning --- social media --- apache spark --- Twitter --- Arabic language --- distributed computing --- smart cities --- smart healthcare --- smart governance --- Triple Bottom Line (TBL) --- thoracic pain --- tree classification --- cross-validation --- hand-foot-and-mouth disease --- early-warning model --- neural network --- genetic algorithm --- sentinel surveillance system --- outbreak prediction --- artificial intelligence --- vascular access surveillance --- arteriovenous fistula --- end stage kidney disease --- dialysis --- kidney failure --- chronic kidney disease (CKD) --- end-stage kidney disease (ESKD) --- kidney replacement therapy (KRT) --- risk prediction --- naïve Bayes classifiers --- precision medicine --- machine learning models --- data exploratory techniques --- breast cancer diagnosis --- tumors classification --- n/a --- naïve Bayes classifiers
Choose an application
The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things.
History of engineering & technology --- atmospheric --- on-line monitoring --- LoRa --- embedded system --- smart environments --- Internet of Things --- indoor occupancy --- machine learning --- data analysis --- landslide susceptibility --- China-Nepal Highway --- LSTM --- remote sensing images --- IoT --- network traffic --- monitoring --- DDoS --- packet classification --- indoor localization --- channel state information --- device-free passive --- WiFi fingerprint --- naive Bayes classification --- feature fusion --- posture recognition --- indoor positioning --- wireless body area network --- Kalman filtering --- multi-sensor combination --- prognostic and health management --- integrative framework --- internet of things --- convolutional neural network --- conditioned-based maintenance --- IoT platform --- intelligent monitoring robot --- active CCTV --- learning model --- electrical devices --- classification --- energy management --- smart environment --- architecture --- blockchain --- communication constraints --- decentralized application --- Ethereum --- Internet of things --- sensing and control --- computational efficiency --- robotic manipulators --- hysteresis --- adaptive control --- wireless sensor network (WSN) --- energy --- ant colony optimization (ACO) --- routing algorithm --- quantum-inspired evolutionary algorithms
Choose an application
As computer and space technologies have been developed, geoscience information systems (GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been rapidly maturing. Moreover, over the last few decades, machine learning techniques including artificial neural network (ANN), deep learning, decision tree, and support vector machine (SVM) have been successfully applied to geospatial science and engineering research fields. The machine learning techniques have been widely applied to GIS and RS research fields and have recently produced valuable results in the areas of geoscience, environment, natural hazards, and natural resources. This book is a collection representing novel contributions detailing machine learning techniques as applied to geoscience information systems and remote sensing.
artificial neural network --- n/a --- model switching --- sensitivity analysis --- neural networks --- logit boost --- Qaidam Basin --- land subsidence --- land use/land cover (LULC) --- naïve Bayes --- multilayer perceptron --- convolutional neural networks --- single-class data descriptors --- logistic regression --- feature selection --- mapping --- particulate matter 10 (PM10) --- Bayes net --- gray-level co-occurrence matrix --- multi-scale --- Logistic Model Trees --- classification --- Panax notoginseng --- large scene --- coarse particle --- grayscale aerial image --- Gaofen-2 --- environmental variables --- variable selection --- spatial predictive models --- weights of evidence --- landslide prediction --- random forest --- boosted regression tree --- convolutional network --- Vietnam --- model validation --- colorization --- data mining techniques --- spatial predictions --- SCAI --- unmanned aerial vehicle --- high-resolution --- texture --- spatial sparse recovery --- landslide susceptibility map --- machine learning --- reproducible research --- constrained spatial smoothing --- support vector machine --- random forest regression --- model assessment --- information gain --- ALS point cloud --- bagging ensemble --- one-class classifiers --- leaf area index (LAI) --- landslide susceptibility --- landsat image --- ionospheric delay constraints --- spatial spline regression --- remote sensing image segmentation --- panchromatic --- Sentinel-2 --- remote sensing --- optical remote sensing --- materia medica resource --- GIS --- precise weighting --- change detection --- TRMM --- traffic CO --- crop --- training sample size --- convergence time --- object detection --- gully erosion --- deep learning --- classification-based learning --- transfer learning --- landslide --- traffic CO prediction --- hybrid model --- winter wheat spatial distribution --- logistic --- alternating direction method of multipliers --- hybrid structure convolutional neural networks --- geoherb --- predictive accuracy --- real-time precise point positioning --- spectral bands --- naïve Bayes
Choose an application
Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens.
Technology: general issues --- History of engineering & technology --- star image --- image denoising --- reinforcement learning --- maximum likelihood estimation --- mixed Poisson–Gaussian likelihood --- machine learning-based classification --- non-uniform foundation --- stochastic analysis --- vehicle–pavement–foundation interaction --- forest growing stem volume --- coniferous plantations --- variable selection --- texture feature --- random forest --- red-edge band --- on-shelf availability --- semi-supervised learning --- deep learning --- image classification --- machine learning --- explainable artificial intelligence --- wildfire --- risk assessment --- Naïve bayes --- transmission-line corridors --- image encryption --- compressive sensing --- plaintext related --- chaotic system --- convolutional neural network --- color prior model --- object detection --- piston error detection --- segmented telescope --- BP artificial neural network --- modulation transfer function --- computer vision --- intelligent vehicles --- extrinsic camera calibration --- structure from motion --- convex optimization --- temperature estimation --- BLDC --- electric machine protection --- touchscreen --- capacitive --- display --- SNR --- stylus --- laser cutting --- quality monitoring --- artificial neural network --- burr formation --- cut interruption --- fiber laser --- semi-supervised --- fuzzy --- noisy --- real-world --- plankton --- marine --- activity recognition --- wearable sensors --- imbalanced activities --- sampling methods --- path planning --- Q-learning --- neural network --- YOLO algorithm --- robot arm --- target reaching --- obstacle avoidance
Choose an application
The predicted climate change is likely to cause extreme storm events and, subsequently, catastrophic disasters, including soil erosion, debris and landslide formation, loss of life, etc. In the decade from 1976, natural disasters affected less than a billion lives. These numbers have surged in the last decade alone. It is said that natural disasters have affected over 3 billion lives, killed on average 750,000 people, and cost more than 600 billion US dollars. Of these numbers, a greater proportion are due to sediment-related disasters, and these numbers are an indication of the amount of work still to be done in the field of soil erosion, conservation, and landslides. Scientists, engineers, and planners are all under immense pressure to develop and improve existing scientific tools to model erosion and landslides and, in the process, better conserve the soil. Therefore, the purpose of this Special Issue is to improve our knowledge on the processes and mechanics of soil erosion and landslides. In turn, these will be crucial in developing the right tools and models for soil and water conservation, disaster mitigation, and early warning systems.
Technology: general issues --- Environmental science, engineering & technology --- landslide --- image classification --- spectrum similarity analysis --- extreme rainfall-induced landslide susceptibility model --- landslide ratio-based logistic regression --- landslide evolution --- Typhoon Morakot --- Taiwan --- vegetation community --- vegetation importance value --- root system --- soil erosion --- grey correlation analysis --- sediment yield --- RUSLE --- Lancang–Mekong River basin --- rainfall threshold --- landslide probability model --- debris flow --- Zechawa Gully --- mitigation countermeasures --- Jiuzhaigou Valley --- water erosion --- susceptibility --- Gaussian process --- climate change --- radial basis function kernel --- weighted subspace random forest --- extreme events --- extreme weather --- naive Bayes --- feature selection --- machine learning --- hydrologic model --- simulated annealing --- earth system science --- PSED Model --- loess --- ICU --- static liquefaction --- mechanical behavior --- pore structure --- alpine swamp meadow --- alpine meadow --- degradation of riparian vegetation --- root distribution --- tensile strength --- tensile crack --- soil management --- land cover changes --- Syria --- hillslopes --- gully erosion --- vegetation restoration --- soil erodibility --- land use --- bridge pier --- overfall --- scour --- landform change impact on pier --- shallow water equations --- wet-dry front --- outburst flood --- TVD-scheme --- MUSCL-Hancock method --- laboratory model test --- extreme rainfall --- rill erosion --- shallow landslides --- deep lip surface --- safety factor --- rainfall erosivity factor --- USLE R --- Deep Neural Network --- tree ring --- dendrogeomorphology --- landslide activity --- deciduous broadleaved tree --- Shirakami Mountains --- spatiotemporal cluster analysis --- landslide hotspots --- dam breach --- seepage --- overtopping --- seismic signal --- flume test --- breach model --- n/a --- Lancang-Mekong River basin
Choose an application
Current approaches to Natural Language Processing (NLP) have shown impressive improvements in many important tasks: machine translation, language modeling, text generation, sentiment/emotion analysis, natural language understanding, and question answering, among others. The advent of new methods and techniques, such as graph-based approaches, reinforcement learning, or deep learning, have boosted many NLP tasks to a human-level performance (and even beyond). This has attracted the interest of many companies, so new products and solutions can benefit from advances in this relevant area within the artificial intelligence domain.This Special Issue reprint, focusing on emerging techniques and trendy applications of NLP methods, reports on some of these achievements, establishing a useful reference for industry and researchers on cutting-edge human language technologies.
Technology: general issues --- History of engineering & technology --- natural language processing --- distributional semantics --- machine learning --- language model --- word embeddings --- machine translation --- sentiment analysis --- quality estimation --- neural machine translation --- pretrained language model --- multilingual pre-trained language model --- WMT --- neural networks --- recurrent neural networks --- named entity recognition --- multi-modal dataset --- Wikimedia Commons --- multi-modal language model --- concreteness --- curriculum learning --- electronic health records --- clinical text --- relationship extraction --- text classification --- linguistic corpus --- deception --- linguistic cues --- statistical analysis --- discriminant function analysis --- fake news detection --- stance detection --- social media --- abstractive summarization --- monolingual models --- multilingual models --- transformer models --- transfer learning --- discourse analysis --- problem–solution pattern --- automatic classification --- machine learning classifiers --- deep neural networks --- question answering --- machine reading comprehension --- query expansion --- information retrieval --- multinomial naive bayes --- relevance feedback --- cause-effect relation --- transitive closure --- word co-occurrence --- automatic hate speech detection --- multisource feature extraction --- Latin American Spanish language models --- fine-grained named entity recognition --- k-stacked feature fusion --- dual-stacked output --- unbalanced data problem --- document representation --- semantic analysis --- conceptual modeling --- universal representation --- trend analysis --- topic modeling --- Bert --- geospatial data technology and application --- attention model --- dual multi-head attention --- inter-information relationship --- question difficult estimation --- named-entity recognition --- BERT model --- conditional random field --- pre-trained model --- fine-tuning --- feature fusion --- attention mechanism --- task-oriented dialogue systems --- Arabic --- multi-lingual transformer model --- mT5 --- language marker --- mental disorder --- deep learning --- LIWC --- spaCy --- RobBERT --- fastText --- LIME --- conversational AI --- intent detection --- slot filling --- retrieval-based question answering --- query generation --- entity linking --- knowledge graph --- entity embedding --- global model --- DISC model --- personality recognition --- predictive model --- text analysis --- data privacy --- federated learning --- transformer --- n/a --- problem-solution pattern
Listing 1 - 8 of 8 |
Sort by
|