Narrow your search

Library

ULB (7)

ULiège (5)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

UGent (4)

VIVES (4)

More...

Resource type

book (7)


Language

English (7)


Year
From To Submit

2020 (1)

2019 (4)

2010 (1)

2008 (1)

Listing 1 - 7 of 7
Sort by

Book
Dual Specificity Phosphatases: From Molecular Mechanisms to Biological Function
Authors: ---
ISBN: 3039216899 3039216880 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Dual specificity phosphatases (DUSPs) constitute a heterogeneous group of protein tyrosine phosphatases with the ability to dephosphorylate Ser/Thr and Tyr residues from proteins, as well as from other non-proteinaceous substrates including signaling lipids. DUSPs include, among others, MAP kinase (MAPK) phosphatases (MKPs) and small-size atypical DUSPs. MKPs are enzymes specialized in regulating the activity and subcellular location of MAPKs, whereas the function of small-size atypical DUSPs seems to be more diverse. DUSPs have emerged as key players in the regulation of cell growth, differentiation, stress response, and apoptosis. DUSPs regulate essential physiological processes, including immunity, neurobiology and metabolic homeostasis, and have been implicated in tumorigenesis, pathological inflammation and metabolic disorders. Accordingly, alterations in the expression or function of MKPs and small-size atypical DUSPs have consequences essential to human disease, making these enzymes potential biological markers and therapeutic targets. This Special Issue covers recent advances in the molecular mechanisms and biological functions of MKPs and small-size atypical DUSPs, and their relevance in human disease.


Book
Stress-Activated Protein Kinases
Authors: ---
ISBN: 9783540755685 3540755683 3642094805 3540755691 Year: 2008 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

To maximize the probability of survival, cells need to coordinate their intracellular activities in response to changes in the extracellular environment. MAP kinase cascades play an important role in the transduction of signals inside eukaryotic cells. In particular, stress stimuli result in the rapid activation of a highly conserved group of MAP kinases, known as SAPKs (Stress-Activated Protein Kinases). These kinases coordinate the generation of adaptive responses that are essential for cell survival, which include the modulation of several aspects of cell physiology from metabolism to gene expression. In this book, leading researchers in the field discuss the state-of-the-art of many aspects of SAPK signalling in various systems from yeast to mammals. These include various chapters on regulatory mechanisms as well as the contribution of the SAPK signalling pathways to processes such as gene expression, metabolism, cell cycle regulation, immune responses and tumorigenesis.

Keywords

MAP Kinase Signaling System --- MAP Kinase Kinase Kinases --- Mitogen-Activated Protein Kinase Kinases --- Mitogen-Activated Protein Kinases --- Mitogen-activated protein kinases. --- MAP kinases --- physiology. --- metabolism. --- Protein. --- Stress. --- Mitogen-activated protein kinases --- Intracellular Signaling Peptides and Proteins --- Protein-Serine-Threonine Kinases --- Signal Transduction --- Protein-Tyrosine Kinases --- Proline-Directed Protein Kinases --- Metabolic Networks and Pathways --- Peptides --- Proteins --- Protein Kinases --- Biochemical Processes --- Metabolism --- Cell Physiological Processes --- Biochemical Phenomena --- Phosphotransferases (Alcohol Group Acceptor) --- Amino Acids, Peptides, and Proteins --- Chemical Processes --- Cell Physiological Phenomena --- Metabolic Phenomena --- Chemical Phenomena --- Chemicals and Drugs --- Phosphotransferases --- Phenomena and Processes --- Transferases --- Enzymes --- Enzymes and Coenzymes --- Animal Biochemistry --- Biochemistry --- Biology - General --- Biology --- Human Anatomy & Physiology --- Chemistry --- Health & Biological Sciences --- Physical Sciences & Mathematics --- MAPKs (Enzymes) --- Life sciences. --- Molecular biology. --- Biochemistry. --- Cell biology. --- Life Sciences. --- Biochemistry, general. --- Cell Biology. --- Molecular Medicine. --- Protein kinases --- Cytology. --- Medicine. --- Clinical sciences --- Medical profession --- Human biology --- Life sciences --- Medical sciences --- Pathology --- Physicians --- Cell biology --- Cellular biology --- Cells --- Cytologists --- Biological chemistry --- Chemical composition of organisms --- Organisms --- Physiological chemistry --- Composition --- Health Workforce --- Molecular biochemistry --- Molecular biophysics --- Biophysics --- Biomolecules --- Systems biology --- Medicine --- Biomedical Research. --- Research. --- Biological research --- Biomedical research


Book
Regulation of vascular smooth muscle function
Author:
ISBN: 161504180X 1615041818 Year: 2010 Publisher: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) : Morgan & Claypool,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Vascular smooth muscle (VSM) constitutes most of the tunica media in blood vessels and plays an important role in the control of vascular tone. Ca2+ is a major regulator of VSM contraction and is strictly regulated by an intricate system of Ca2+ mobilization and Ca2+ homeostatic mechanisms. The interaction of a physiological agonist with its plasma membrane receptor stimulates the hydrolysis of membrane phospholipids and increases the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates Ca2+ release from the intracellular stores in the sarcoplasmic reticulum. Agonists also stimulate Ca2+ influx from the extracellular space via voltage-gated, receptor-operated, and store-operated channels. Ca2+ homeostatic mechanisms tend to decrease the intracellular free Ca2+ concentration ([Ca2+]i) by activating Ca2+ extrusion via the plasmalemmal Ca2+ pump and the Na+/Ca2+ exchanger and the uptake of excess Ca2+ by the sarcoplasmic reticulum and possibly the mitochondria. A threshold increase in [Ca2+]i activates Ca2+-dependent myosin light chain (MLC) phosphorylation, stimulates actin-myosin interaction, and initiates VSM contraction. The agonist-induced maintained increase in DAG also activates specific protein kinase C (PKC) isoforms, which in turn cause phosphorylation of cytoplasmic substrates that increase the contractile myofilaments force sensitivity to Ca2+ and thereby enhance VSM contraction. Agonists could also activate Rho kinase (ROCK), leading to inhibition of MLC phosphatase and further enhancement of the myofilaments force sensitivity to Ca2+. The combined increases in [Ca2+]i, PKC and ROCK activity cause significant vasoconstriction and could also stimulate VSM hypertrophy and hyperplasia. The protracted and progressive activation of these processes could lead to pathological vascular remodeling and vascular disease.

Keywords

Muscle contraction. --- Vascular diseases. --- Vascular smooth muscle. --- Ion Channels --- Muscle Proteins --- Microfilament Proteins --- Hemodynamics --- Muscle, Smooth --- Molecular Motor Proteins --- Cardiovascular Diseases --- Blood Vessels --- Diseases --- Muscles --- Contractile Proteins --- Cardiovascular Physiological Processes --- Cardiovascular System --- Adenosine Triphosphatases --- Membrane Glycoproteins --- Biopolymers --- Membrane Transport Proteins --- Cytoskeletal Proteins --- Polymers --- Tissues --- Carrier Proteins --- Acid Anhydride Hydrolases --- Proteins --- Cardiovascular Physiological Phenomena --- Membrane Proteins --- Anatomy --- Musculoskeletal System --- Amino Acids, Peptides, and Proteins --- Circulatory and Respiratory Physiological Phenomena --- Macromolecular Substances --- Hydrolases --- Chemicals and Drugs --- Phenomena and Processes --- Enzymes --- Enzymes and Coenzymes --- Myosins --- Muscle, Smooth, Vascular --- Vasoconstriction --- Calcium Channels --- Vascular Diseases --- Human Anatomy & Physiology --- Health & Biological Sciences --- Physiology --- Vascular resistance. --- Blood pressure. --- Vascular smooth muscle --- Physiology. --- physiology. --- Signal transduction --- Calcium --- Blood pressure --- AngII, angiotensin II --- ATP, adenosine triphosphate --- CPI-17, PKC-potentiated phosphatase inhibitor protein-17 kDa --- CAM, calmodulin --- DAG, diacylglycerol --- ET-1, endothelin --- IP3, inositol 1,4,5-trisphosphate --- MAPK, mitogen-activated protein kinase --- MARCKs, myristoylated alanine-rich C-kinase substrate --- MEK, MAPK kinase --- MLC, myosin light chain --- NCX, Na+-Ca2+ exchanger --- PDBu, phorbol 12,13-dibutyrate; PIP2, phosphatidylinositol 4,5-bisphosphate --- PKC, protein kinase C --- PMA, phorbol myristate acetate --- RACKs, receptors for activated C-kinase --- ROCK, Rho-kinase --- VSMC, vascular smooth muscle cell


Book
Research of Pathogenesis and Novel Therapeutics in Arthritis
Author:
ISBN: 3038970662 3038970654 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Arthritis has a high prevalence globally and includes over 100 different types, the most common of which are rheumatoid arthritis, osteoarthritis, psoriatic arthritis, and inflammatory arthritis. The exact etiology of arthritis remains unclear and no cure exists. Anti-inflammatory drugs are commonly used in the treatment of arthritis but are associated with significant side effects. Novel modes of therapy and additional prognostic biomarkers are urgently needed for arthritis patients. This book summarizes and discusses the global picture of the current understanding of arthritis.

Keywords

receptor activator of nuclear factor ?B --- infliximab --- tripterine --- triptolide --- osteoblast --- tumor necrosis factor-alpha --- synovial cell --- anti-arthritis --- biosimilars --- Epstein-Barr virus --- cytokines --- SOX9 --- parathyroid hormone --- nitric oxide --- rat --- etanercept --- angiogenesis --- glycosylation --- mitogen activated protein kinase --- Th9 lymphocytes --- rheumatoid arthritis --- IL-6 --- clodronate --- bone erosion --- mesenchymal stem cells --- collagen-induced arthritis --- biological --- gene expression --- inflammatory arthritis --- osteoarthritis --- fraxinellone --- nuclear factor kappa B --- messenger RNA --- inflammation --- miRNA --- disease-modifying --- adipokines --- WNT --- glycoprotein 42 --- miR-199a-5p --- proliferation --- next-generation sequencing --- collagen --- osteoarthritis (OA) --- experimental arthritis --- bone morphogenetic protein --- TNF-? --- computational modeling --- basic research --- osteoclast --- therapeutics --- certolizumab pegol --- chondrocytes --- progenitor cells --- adjuvant arthritis --- adalimumab --- triterpenoid --- sclareol --- TNF? --- fibroblast growth factor 2 --- antibodies --- osteoblasts --- molecular pathology --- Th17 --- immunology --- obesity --- visfatin --- articular cartilage --- autoimmune --- biomarkers --- celastrol --- MAPK --- disease pathways --- IL1? --- arthritis --- bioinformatics --- anticitrullinated peptide antibodies --- drug delivery system --- antagonists --- shared epitope --- pathology --- SMA- and MAD-related protein --- small-molecule inhibitor --- transforming growth factor ? --- mice --- golimumab --- spinal fusion --- antirheumatic drug --- early osteoarthritis --- stem cell --- rheumatoid factor --- therapeutic antibody --- bisphosphonate --- osteoclastogenesis --- interleukin --- spondyloarthropathies --- clinical translation --- therapy --- Traditional Chinese medicine --- chemokines --- structure --- cell signaling --- microRNA


Book
Diet and Immune Function
Authors: --- ---
ISBN: 3039216139 3039216120 Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Supporting initiation, development and resolution of appropriate immune responses is key to survival. Many nutrients and dietary components have been purported to have a role in supporting optimal immune function. This is vital throughout the life course, from the development and programming of the immune system in early life, to supporting immunity and reducing chronic inflammation in older people. In this special issue of Nutrients, we examine the evidence for the role of diet and dietary components in promoting protective immunity.

Keywords

immunonutrition --- supplementation --- superoxide dismutase (SOD) --- fermented milk --- selenocysteine --- dendritic cells --- lipoxygenase (LOX) --- chronic inflammatory conditions --- formulation --- immune system --- cytokines --- skeletal muscle --- zinc --- non-digestible carbohydrates --- Toll-like receptor --- carbohydrates --- fiber --- lymphocytes --- antibody --- infants --- liver --- macrophage --- inflammatory process --- probiotic --- plant --- older people --- gut barrier --- infection --- amino acids --- gut --- T helper 1 (Th1) --- immunity --- T cells --- bioactive peptide --- inhibitor of kappa kinase (IKK) --- inflammation --- adhesion molecules --- leukocytes --- human milk oligosaccharides --- vitamin D --- food structure --- vitamin E --- mitogen-activated protein Kinase (MAPK) --- gut microbiota --- weaning --- homeostasis --- intestinal immune system --- extra-cellular signal regulated kinases (ERK) --- cyclooxygenase (COX) --- oxidative stress --- life course --- polyphenols --- oligosaccharides --- micronutrients --- Th17 --- obesity --- tolerance --- arachidonic acid --- growth factors --- anti-inflammation --- age-related immunity --- prebiotic --- biomarker --- microbiome --- functional foods --- immunosenescence --- nutrition --- molecular mechanisms --- metabolism --- macronutrients --- toll-like receptor 4 --- sepsis --- nutrition guidelines --- microbiota --- immunomodulation --- inflammatory markers --- elderly --- Th1/Th17 response --- adults --- reactive oxygen species (ROS) --- anorexia nervosa --- macrophages --- autoimmune diseases --- fatty acids --- T cell --- Treg --- breast milk --- nitric oxide synthase (NOS) --- chemokines --- anti-tumorigenic --- metabolites --- deficiency --- protein hydrolysate --- nuclear factor kappa-light-chain-enhancer of activated B cells (NF-?B) --- cancer


Book
Plant Innate Immunity 2.0
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants possess a rather complex and efficient immune system. During their evolutionary history, plants have developed various defense strategies in order to recognize and distinguishing between self and non-self, and face pathogens and animal pests. Accordingly, to study the plant innate immunity represents a new frontier in the plant pathology and crop protection fields. This book is structured in 6 sections. The first part introduces some basic and general aspects of the plant innate immunity and crop protection. Sections 2–5 focus on fungal and oomycete diseases (section 2), bacterial and phytoplasma diseases (section 3), virus diseases (section 4), and insect pests (section 5), with a number of case studies and plant–pathogen/pest interactions. The last section deals with plant disease detection and control. The book aims to highlight new trends in these relevant areas of plant sciences, providing a global perspective that is useful for future and innovative ideas.

Keywords

Bakraee --- tomato gray mold --- Citrus sinensis --- CDPKs --- salicylic acid --- calmodulin --- glycerol-3-phosphate --- biotic stress responses --- negative regulator --- rice blast --- metabolomics --- hydroperoxide lyase --- Bromoviridae --- induced defense responses --- leaf transcriptome --- calcium signature --- “Candidatus Liberibacter” --- garden impatiens --- Chilo suppressalis --- plant defence --- plant–virus interactions --- spectral distribution of light --- Magnaporthe oryzae --- plant-virus interaction --- biological control --- ultrastructure --- pathogenicity --- disease resistance --- Potato virus Y --- symbiosis --- N-hydroxypipecolic acid --- VaHAESA --- priming --- plant–microbe interactions --- systemic and local movement --- immunity --- CaWRKY40b --- plant protection products --- hypersensitive response --- cellulose synthase --- herbivore-induced defense response --- Macrosiphum euphorbiae --- RTNLB --- ISR --- RNA silencing --- herbivore-induced plant defenses --- disease management --- sustainable crop protection --- WRKY networks --- Camellia sinensis --- RNA-Seq --- transcriptional modulation --- ETI --- pathogenesis related-protein 2 --- cell wall --- basal defense --- candidate disease resistance gene --- MTI --- grapevine --- defense-related signaling pathways --- wounding --- ethylene --- CMLs --- Prune dwarf virus --- Arabidopsis thaliana --- SAR signalling --- innate immunity --- agrochemicals --- OsGID1 --- Nilaparvata lugens --- tobacco --- tomato leaf mold --- Solanum lycopersicum --- downy mildew --- pipecolic acid --- chemical elicitors --- bismerthiazol --- pre-conditioning --- gibberellin --- “Candidatus Phytoplasma” --- dieback --- CaWRKY22 --- microbiota --- Sogatella furcifera --- PTI --- SAR --- Bacillus subtilis --- PRRs --- aphid resistance --- methyl salicylate --- regurgitant --- Myzus persicae --- Agrobacterium --- Ectropis obliqua --- Capsicum annuum --- polyphenol oxidase --- plant proteases --- plant immunity --- jasmonic acid --- calcium --- light dependent signalling --- Ralstonia solanacearum --- proteomics --- plant defense response --- Arabidopsis --- Lasiodiplodia theobromae --- azelaic acid --- citrus decline disease --- New Guinea impatiens --- replication process --- rice --- mango --- ?-3 fatty acid desaturase --- Ralstonia Solanacearum --- food security --- iTRAQ --- mitogen-activated protein kinase 4


Book
Plant Natural Products for Human Health
Authors: ---
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants have served mankind as an important source of foods and medicines. While we all consume plants and their products for nutritional support, a majority of the world population also rely on botanical remedies to meet their health needs, either as their own “traditional medicine” or as “complementary and alternative medicine”. From a pharmaceutical point of view, many compounds obtained from plant sources have long been known to possess bio/pharmacological activities, and historically, plants have yielded many important drugs for human use, from morphine discovered in the early nineteenth century to the more recent paclitaxel and artemisinin. Today, we are witnessing a global resurgence in interest and use of plant-based therapies and botanical products, and natural products remain an important and viable source of lead compounds in many drug discovery programs.This Special Issue on “Plant Natural Products for Human Health” compiles a series of scientific reports to demonstrate the medicinal potentials of plant natural products. It covers a range of disease targets, such as diabetes, inflammation, cancer, neurological disease, cardiovascular disease, liver damage, bacterial, and fungus infection and malarial. These papers provide important insights into the current state of research on drug discovery and new techniques. It is hoped that this Special Issue will serve as a timely reference for researchers and scholars who are interested in the discovery of potentially useful molecules from plant sources for health-related applications.

Keywords

PhGs --- bitter orange --- immunomodulator --- A549 cells --- bergapten --- triptolide --- BMP/Smad --- phytochemicals --- antioxidant enzymes --- kumquat --- MTT assay --- HepaRG cells --- human health --- nanoparticles --- dendritic cells --- drug discovery --- biofilm --- catechin --- antitubercular activity --- Panax notoginseng saponins --- animals --- mouse-hair growth --- A? --- curcumin --- WNT/?-catenin --- copaiba --- AD --- Plasmodium parasites --- traditional medicine --- procyanidin A2 --- PET inhibition --- rheumatoid arthritis --- cannabinoid type 1 receptor --- iridoids --- inflammatory bowel disease --- acute liver injury --- human-hair-follicle dermal papilla cells --- Neuroprotective --- dihydromyricetin --- AMPK --- thromboembolism --- ginseng --- drug design and development --- endoplasmic reticulum stress --- mitogen-activated protein kinase --- Nrf2 --- prenylated flavonoids --- inflammation --- preclinical studies --- plants --- dietary supplements --- Glycyrrhiza uralensis --- aspirin --- Tripterygium wilfordii --- P. eryngii --- reperfusion --- ethnopharmacology --- glucans --- innovation --- hpatoprotection --- hinokitiol --- phytocannabinoid --- antistaphylococcal activity --- Shh/Gli --- green tea --- sesquiterpenoids --- adjuvant-induced arthritis --- yuzu --- hepatotoxicity --- p53/Bax --- Keap1 --- nuclear factor-kappaB --- oxidative stress --- pharmacokinetic study --- cinnamamides --- toxicity --- APAP --- Astragali Radix --- computational softwares --- plant natural product --- onion --- anti-malaria activity --- lipogenesis --- bleeding time --- diterpenoids --- Penthorum chinense Pursh --- myocardial hypertrophy --- automation --- adjuvant --- grapefruit --- melanoma cell --- essential oil --- sweet orange --- Amadori rearrangement compounds --- heme oxygenase --- global health --- calorie restriction --- bergamot --- liposomes --- EGCG --- celastrol --- herb–drug interactions --- cannabigerol --- anti-inflammation --- OH· free radical --- molecular targets --- gluconeogenesis --- microbiome --- SIRT1 --- fucoidan --- heart --- PC12 cells --- acetaminophen --- omics --- time-kill assay --- arthritis --- lychee seed --- bioinformatics --- structure–activity relationship --- precision medicine --- orange petitgrain --- immune modulation --- antiproliferation --- flavonoids --- scoulerine --- oleoresin --- triterpenic acids --- Cannabis sativa --- NAFLD --- biological activity --- differentiation --- oxygen consumption rate --- mitochondrial bioenergetics --- neroli --- apoptosis --- targeted delivery --- platelet activation --- protein kinase --- heat-process --- hepatic steatosis --- hyperglycemia --- natural products --- lemon --- genistein --- neuroinflammation --- astragaloside IV --- cytoxicity --- flavonoid --- paracetamol --- medicinal plants --- insulin resistance --- resveratrol --- mandarin --- garlic --- TGF-? --- morin hydrate --- sirtuin 3 --- MMPs --- gomisin N --- lime --- Ziziphus jujuba --- antifungal activity --- ischemia --- migration --- caspases --- small molecules

Listing 1 - 7 of 7
Sort by