Listing 1 - 10 of 39 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
City planning --- Spatial analysis (Statistics) --- Landsat satellites --- Urbanisme --- Analyse spatiale (Statistique) --- LANDSAT (Satellites de télédétection) --- Remote sensing --- Télédétection --- 528.8 --- Remote sensing. Teledetection --- 528.8 Remote sensing. Teledetection --- LANDSAT (Satellites de télédétection) --- Télédétection --- Analysis, Spatial (Statistics) --- Correlation (Statistics) --- Spatial systems --- Satellites, Landsat --- Scientific satellites --- Cities and towns --- Civic planning --- Land use, Urban --- Model cities --- Redevelopment, Urban --- Slum clearance --- Town planning --- Urban design --- Urban development --- Urban planning --- Land use --- Planning --- Art, Municipal --- Civic improvement --- Regional planning --- Urban policy --- Urban renewal --- Government policy --- Management --- Remote sensing.
Choose an application
Forêts --- LANDSAT (Satellites de télédétection) --- SPOT (Satellite de télédétection) --- Écosystèmes --- Foresterie --- Télédétection. --- Gestion
Choose an application
This Special Issue (SI), entitled "Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass”, resulted from 13 peer-reviewed papers dedicated to Forestry and Biomass mapping, characterization and accounting. The papers' authors presented improvements in Remote Sensing processing techniques on satellite images, drone-acquired images and LiDAR images, both aerial and terrestrial. Regarding the images’ classification models, all authors presented supervised methods, such as Random Forest, complemented by GIS routines and biophysical variables measured on the field, which were properly georeferenced. The achieved results enable the statement that remote imagery could be successfully used as a data source for regression analysis and formulation and, in this way, used in forestry actions such as canopy structure analysis and mapping, or to estimate biomass. This collection of papers, presented in the form of a book, brings together 13 articles covering various forest issues and issues in forest biomass calculation, constituting an important work manual for those who use mixed GIS and RS techniques.
Research & information: general --- Geography --- AGB estimation and mapping --- mangroves --- UAV LiDAR --- WorldView-2 --- terrestrial laser scanning --- above-ground biomass --- nondestructive method --- DBH --- bark roughness --- Landsat dataset --- forest AGC estimation --- random forest --- spatiotemporal evolution --- aboveground biomass --- variable selection --- forest type --- machine learning --- subtropical forests --- Landsat 8 OLI --- seasonal images --- stepwise regression --- map quality --- subtropical forest --- urban vegetation --- biomass estimation --- Sentinel-2A --- Xuzhou --- forest biomass estimation --- forest inventory data --- multisource remote sensing --- biomass density --- ecosystem services --- trade-off --- synergy --- multiple ES interactions --- valley basin --- norway spruce --- LiDAR --- allometric equation --- individual tree detection --- tree height --- diameter at breast height --- GEOMON --- ALOS-2 L band SAR --- Sentinel-1 C band SAR --- Sentinel-2 MSI --- ALOS DSM --- stand volume --- support vector machine for regression --- ordinary kriging --- forest succession --- leaf area index --- plant area index --- machine learning algorithms --- forest growing stock volume --- SPOT6 imagery --- Pinus massoniana plantations --- sentinel 2 --- landsat --- remote sensing --- GIS --- shrubs biomass --- bioenergy --- vegetation indices
Choose an application
This book is a collection of recent developments, methodologies, calibration and validation techniques, and applications of thermal remote sensing data and derived products from UAV-based, aerial, and satellite remote sensing. A set of 15 papers written by a total of 70 authors was selected for this book. The published papers cover a wide range of topics, which can be classified in five groups: algorithms, calibration and validation techniques, improvements in long-term consistency in satellite LST, downscaling of LST, and LST applications and land surface emissivity research.
Environmental science, engineering & technology --- Land Surface Temperature (LST) --- satellite retrievals of LST --- LST from GOES satellites --- land surface temperature --- drones --- unmanned aerial vehicles --- thermal remote sensing --- MODIS --- Bayesian Maximum Entropy --- interpolation --- Himalaya --- air temperature --- topography --- Landsat --- split window algorithm --- TIRS --- thermal --- Landsat 8 --- stray light correction --- split-window algorithm --- single-channel algorithm --- AMSR2 --- annual cycle parameters --- random forest --- cloudy sky LST --- evapotranspiration --- data fusion --- field-scale --- machine-learning --- physical model --- Sentinel-2 --- Sentinel-3 --- Downscaling --- thermal infrared --- disaggregation --- Copernicus --- hyperspectral thermal infrared --- spectral smoothness --- temperature-emissivity separation --- sensitivity analysis --- noise --- land surface temperature (LST) --- daytime LST --- nighttime LST --- validation --- land surface emissivity (LSE) --- single channel algorithm --- radiative transfer equation --- mono window algorithm --- SURFRAD data --- GK2A --- split-window method --- BSRN --- LST --- downscaling --- LSA-SAF --- Sentinel 2 --- DEM --- spatial averaging biases --- land surface emissivity --- measurement uncertainties --- emissivity box method --- Fourier transform infrared spectrometer --- portable spectrometer --- n/a
Choose an application
Remote sensing plays a pivotal role in understanding where and how floods and glacier geohazards occur; their severity, causes and types; and the risk that they may pose to populations, activities and properties. By providing a spectrum of imaging capabilities, resolutions and temporal and spatial coverage, remote sensing data acquired from satellite, aerial and ground-based platforms provide key geo-information to characterize and model these processes. This book includes research papers on novel technologies (e.g., sensors, platforms), data (e.g., multi-spectral, radar, laser scanning, GPS, gravity) and analysis methods (e.g., change detection, offset tracking, structure from motion, 3D modeling, radar interferometry, automated classification, machine learning, spectral indices, probabilistic approaches) for flood and glacier imaging. Through target applications and case studies distributed globally, these articles contribute to the discussion on the current potential and limitations of remote sensing in this specialist research field, as well as the identification of trends and future perspectives.
Research & information: general --- glacier surge --- glacier collapse --- rock-slope instability --- hazard --- Landsat --- Sentinel 2 --- Tibet --- flood extent mapping --- supervised classification --- NDWI --- synthetic aperture radar (SAR) --- web application --- synthetic aperture radar --- offset tracking --- displacements --- Sentinel-1 --- glacier monitoring --- flood mapping --- damage assessment --- SAR image --- Landsat-8 --- Google Earth Engine --- GEE --- Bangladesh --- SAR intensity time series --- urban flood mapping --- double bounce effect --- Hurricane Matthew --- flood --- FPI --- GRACE --- terrestrial water storage anomaly --- storage deficit --- mass balance --- snow depth --- glacier retreat --- surface DEM --- elevation change --- Sentinel --- Secchi disk --- chlorophyll a --- sediments --- phytoplankton --- floods --- remote sensing --- GIS --- disaster mapping --- Lower Chenab Plain --- laserscanning --- UAV—structure from Motion --- multi-spectral satellite data --- synthetic Aperture Radar --- glacier lake evolution --- glacier river --- slope processes --- rock fall --- cryosphere --- fusion --- inundation probability --- Hurricane Harvey --- ADCIRC --- n/a --- UAV-structure from Motion
Choose an application
In recent decades, there has been an increase in the development of strategies for water ecosystem mapping and monitoring. Overall, this is primarily due to legislative efforts to improve the quality of water bodies and oceans. Remote sensing has played a key role in the development of such approaches—from the use of drones for vegetation mapping to autonomous vessels for water quality monitoring. Within the specific context of vegetation characterization, the wide range of available observations—from satellite imagery to high-resolution drone aerial imagery—has enabled the development of monitoring and mapping strategies at multiple scales (e.g., micro- and mesoscales). This Special Issue, entitled “Novel Advances in Aquatic Vegetation Monitoring in Ocean, Lakes and Rivers”, collates recent advances in remote sensing-based methods applied to ocean, river, and lake vegetation characterization, including seaweed, kelp, submerged and emergent vegetation, and floating-leaf and free-floating plants. A total of six manuscripts have been compiled in this Special Issue, ranging from area mapping substrates in riverine environments to the identification of macroalgae in marine environments. The work presented leverages current state-of-the-art methods for aquatic vegetation monitoring and will spark further research within this field.
bottom reflectance --- aquatic vegetation --- normalized difference vegetation index (NDVI) --- Lake Ulansuhai --- concave–convex decision function --- radiative transfer --- methodological comparison --- remote sensing extraction --- invasive plants --- CAS S. alterniflora --- spectroscopy --- China --- nuclear power station --- floating algae index (FAI) --- Landsat OLI --- Spartina alterniflora --- substrate --- unmanned aerial vehicle --- Lake Baikal --- reflectance --- 1st derivative --- seaweed --- remote sensing --- WorldView-2 --- species discrimination --- WorldView-3 --- water-column correction --- Selenga River Delta --- macroalgae --- object-based image analysis --- seaweed enhancing index (SEI) --- freshwater wetland --- GF-1 satellite --- river
Choose an application
Numerous studies indicate an accelerated growth of forest trees, induced by ongoing climate change. Similar trends were recently found for urban trees in major cities worldwide. Studies frequently report about substantial effects of climate change and the urban heat island effect (UHI) on plant growth. The combined effects of increasing temperatures, changing precipitation patterns, and extended growing season lengths, in addition to increasing nitrogen deposition and higher CO2 concentrations, can increase but also reduce plant growth. Closely related to this, the multiple functions and services provided by urban trees may be modified. Urban trees generate numerous ecosystem services, including carbon storage, mitigation of the heat island effect, reduction of rainwater runoff, pollutant filtering, recreation effects, shading, and cooling. The quantity of the ecosystem services is often closely associated with the species, structure, age, and size of the tree as well as with a tree’s vitality. Therefore, greening cities, and particularly planting trees, seems to be an effective option to mitigate climate change and the UHI. The focus of this Special Issue is to underline the importance of trees as part of the urban green areas for major cities in all climate zones. Empirical as well as modeling studies of urban tree growth and their services and disservices in cities worldwide are included. Articles about the dynamics, structures, and functions of urban trees as well as the influence of climate and climate change on urban tree growth, urban species composition, carbon storage, and biodiversity are also discussed.
green spaces --- urban heat island --- Landsat TM --- human health --- root:shoot ratio --- choice experiment --- urban trees --- BVOC emission --- climate change --- urbanity --- urbanization --- sustainability --- drought stress --- ecosystem disservices --- tree growth --- Greenway --- oxides --- hot arid urban climate --- carbon sequestration --- abundance --- landscape planning --- bud break --- urban microclimate --- tree competition --- urban forest --- allergenic potential --- sampling plots --- climate change implications --- ecosystem modeling --- preferences --- urban parks --- basal area --- urban tree growth --- air pollution removal --- environmental quality --- species richness --- surface temperature --- drought --- growing season --- air pollution --- ecosystem services --- biomass allocation
Choose an application
Unmanned aerial vehicles (UAV) have already become an affordable and cost-efficient tool to quickly map a targeted area for many emerging applications in the arena of ecological monitoring and biodiversity conservation. Managers, owners, companies, and scientists are using professional drones equipped with high-resolution visible, multispectral, or thermal cameras to assess the state of ecosystems, the effect of disturbances, or the dynamics and changes within biological communities inter alia. We are now at a tipping point on the use of drones for these type of applications over natural areas. UAV missions are increasing but most of them are testing applicability. It is time now to move to frequent revisiting missions, aiding in the retrieval of important biophysical parameters in ecosystems or mapping species distributions. This Special Issue shows UAV applications contributing to a better understanding of biodiversity and ecosystem status, threats, changes, and trends. It documents the enhancement of knowledge in ecological integrity parameters mapping, long-term ecological monitoring based on drones, mapping of alien species spread and distribution, upscaling ecological variables from drone to satellite images: methods and approaches, rapid risk and disturbance assessment using drones, mapping albedo with UAVs, wildlife tracking, bird colony and chimpanzee nest mapping, habitat mapping and monitoring, and a review on drones for conservation in protected areas.
Pinus nigra --- unmanned aerial vehicles (UAVs) --- biological conservation --- precision --- flight altitude --- accuracy --- multiscale approach --- low-cost UAV --- LTER --- small UAV --- ecological monitoring --- Sequoia --- long-term monitoring --- albedo --- image processing --- vegetation indices --- Tanzania --- ground-truth --- Sentinel-2 --- biodiversity threats --- field experiments --- effective management --- great apes --- drone --- ecological integrity --- multispectral --- rice crops --- conservation --- protected areas --- survey --- response surface --- aerial survey --- bird censuses --- multispectral mapping --- drones --- UAS --- hyperspectral --- UAV --- random forest --- Pinus sylvestris --- NDVI --- UAVs --- Parrot Sequoia --- supervised classification --- drone mapping --- RPAS --- greenness index --- image resolution --- Plegadis falcinellus --- Motus --- biodiversity --- Landsat 8 --- Sentinel --- boreal forest --- phenology --- LTSER --- western swamphen --- Parrot SEQUOIA --- native grassland --- forêt Montmorency --- drought --- forest regeneration --- radio-tracking
Listing 1 - 10 of 39 | << page >> |
Sort by
|