Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Learn how to accelerate C++ programs using data parallelism. Data parallelism in C++ enables access to parallel resources in a modern heterogeneous system, freeing you from being locked into any particular computing device. Now a single C++ application can use any combination of devices—including GPUs, CPUs, FPGAs and AI ASICs—that are suitable to the problems at hand. This open access book enables C++ programmers to be at the forefront of this exciting and important new development that is helping to push computing to new levels. It is full of practical advice, detailed explanations, and code examples to illustrate key topics. This book teaches data-parallel programming using C++ and the SYCL standard from the Khronos Group and walks through everything needed to use SYCL for programming heterogeneous systems. The book begins by introducing data parallelism and foundational topics for effective use of SYCL and Data Parallel C++ (DPC++), the open source compiler used in this book. Later chapters cover advanced topics including error handling, hardware-specific programming, communication and synchronization, and memory model considerations. You will learn: • How to accelerate C++ programs using data-parallel programming • How to target multiple device types (e.g. CPU, GPU, FPGA) • How to use SYCL and SYCL compilers • How to connect with computing’s heterogeneous future via Intel’s oneAPI initiative.
Programming languages (Electronic computers). --- Computer input-output equipment. --- Programming Languages, Compilers, Interpreters. --- Hardware and Maker. --- Computer hardware --- Computer I/O equipment --- Computers --- Electronic analog computers --- Electronic digital computers --- Hardware, Computer --- I/O equipment (Computers) --- Input equipment (Computers) --- Input-output equipment (Computers) --- Output equipment (Computers) --- Computer systems --- Computer languages --- Computer program languages --- Computer programming languages --- Machine language --- Electronic data processing --- Languages, Artificial --- Input-output equipment --- Programming Languages, Compilers, Interpreters --- Hardware and Maker --- Maker --- heterogenous --- FPGA programming --- GPU programming --- Parallel programming --- Data parallelism --- SYCL --- Intel One API --- Programming & scripting languages: general --- Compilers & interpreters --- Heterogeneous computing. --- C++ (Computer program language) --- OpenCL (Computer program language) --- Open CL (Computer program language) --- Open Computing Language (Computer program language) --- Programming languages (Electronic computers) --- Heterogeneous processing (Computers) --- High performance computing --- Parallel processing (Electronic computers)
Choose an application
Molecular simulations are commonly used in physics, chemistry, biology, material science, engineering, and even medicine. This book provides a wide range of molecular simulation methods and their applications in various fields. It reflects the power of molecular simulation as an effective research tool. We hope that the presented results can provide an impetus for further fruitful studies.
Technology: general issues --- molecular dynamics simulation --- osmosis --- water transport --- nanochannel --- carbon nanotube --- graphene --- osmolyte --- compartment --- rhodopsins --- spectral properties of rhodopsins --- spectral tuning in rhodopsins --- engineering of red-shifted rhodopsins --- photobiology --- biological photosensors --- molecular modeling --- multiscale --- coarse graining --- Monte Carlo simulation --- force fields --- neural network --- many body interactions --- sampling --- local sampling --- local free energy landscape --- generalized solvation free energy --- molecular solvation theory --- three-dimensional reference interaction site model --- Kovalenko-Hirata closure --- biomolecular simulation --- multiple time step MD --- protein-ligand binding --- biomolecular solvation --- antibody --- epitope --- molecular dynamics --- mutation --- toll-like receptor --- GPU programming --- DNA damage --- proton transport --- drag reduction --- surfactant molecules --- self-assembly --- coarse-grained molecular simulation --- numerical method --- laser-matter interaction --- time-dependent Schrödinger equation --- time-dependent unitary transformation method --- strong-field ionization --- Kramers-Henneberger frame --- hairy nanoparticles --- adsorption on nanoparticles --- nanocarriers --- computer simulations --- COVID-19 --- SARS-CoV-2 --- PF-07321332 --- α-ketoamide --- 3CL protease --- main protease --- DFT --- CASTEP --- aiMD --- ab initio molecular dynamics --- phase transition --- polymorphism --- Janus particles --- phase transitions --- gemini --- force field --- parametrisation --- antimicrobial --- membranes --- colloids with competing interactions --- periodic microphases --- confinement --- Monte Carlo --- atomistic simulation --- molecular simulation --- hard sphere --- extreme conditions --- nanocomposites --- cluster --- crystallization --- atomic structure --- packing --- semi-flexible polymers --- order parameter --- n/a --- time-dependent Schrödinger equation --- Technology.
Listing 1 - 2 of 2 |
Sort by
|